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Abstract

This thesis deals with the automatic and semantically autonomous construction of the
mental representations of an agent—so-called ‘symbol grounding’.

How can a system perform an independent semantic interpretation of its sensorimotor
data, that is not just an imitation of the semantics in the head of its designer? The ability to
do so is a prerequisite for general learning in unknown environments. Previous approaches
try to achieve this in three different ways: by simulating a sufficiently complex biological
brain (anatomically motivated), by simulating and combining functional modules of the
human psyche (psychologically motivated), and by identifying a fundamental algorithm
that enables different types of learning in the same way (holistically motivated).

This work follows the third approach and draws its inspiration from modern phenomeno-
logy, theories of embodied cognition, semiotics, and methods of machine learning. Previous
approaches to the dynamic generation of representations are presented. After that a
new approach in the field of reinforcement learning is worked out. Physically present
aspects of the environment are captured as sensorimotor activations within a system so
that their occurrence can be predicted probabilistically. This is implemented within the
theoretical framework of conditional probabilities according to Bayes with an extension
for the identification of hierarchical structures in the environment.
It can be shown, on the one hand, that a hierarchical approach exceeds previous

methods for sequence prediction. On the other hand, it allows a differentiation of
different subsequences and it allows their representation and the modification of these
representations at runtime. The possibilities and limitations of the developed algorithm
are illustrated and evaluated on the basis of various experiments.
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Zusammenfassung

Die Arbeit befasst sich mit der automatischen und semantisch autarken Konstruktion
mentaler Repräsentationen eines Agenten – dem so genannten „Symbol Grounding“.
Wie kann ein System seine sensomotorischen Daten selbständig semantisch interpre-

tieren, ohne die Semantik im Kopf seines Entwicklers zu bemühen? Diese Fähigkeit ist
Voraussetzung für generelles Lernen in unbekannten Umgebungen. Bisherige Ansätze ver-
suchen dies auf drei Arten zu erreichen: durch die Simulation eines hinreichend komplexen
biologischen Gehirns (anatomisch motiviert), durch die Nachbildung und Kombination
funktionaler Module der menschlichen Psyche (psychologisch motiviert) und durch die
Identifikation eines grundlegenden Algorithmus der auf die gleiche Weise unterschiedliche
Arten des Lernens ermöglicht (holistisch motiviert).

Diese Arbeit folgt dem dritten Ansatz und zieht als Inspiration Phänomenologie,
Theorien der Embodied Cognition, Semiotik sowie Methoden des Machine Learning
heran. Bisherige Ansätze zur dynamischen Generierung von Repräsentationen werden
vorgestellt. Daraufhin wird der eigene Ansatz aus dem Bereich des Reinforcement Learning
ausgearbeitet. Aspekte der Umwelt werden als sensomotorische Aktivierungen erfasst, so
dass ihr Auftreten probabilistisch vorhergesagt werden kann. Informatisch umgesetzt wird
dies im theoretischen Rahmen konditionaler Wahrscheinlichkeiten nach Bayes mit einer
Erweiterung zur Erfassung hierarchischer Strukturen.
Es kann gezeigt werden, dass ein hierarchischer Ansatz bisherige Methoden der Se-

quenzprognose übertrifft. Zum Anderen ermöglicht er eine Differenzierung verschiedener
Teilsequenzen, für welche Repräsentationen dynamisch zur Laufzeit erstellt und modifiziert
werden. Die Möglichkeiten und Grenzen des entwickelten Algorithmus werden anhand
verschiedener Experimente dargestellt und evaluiert.

Keywords

Symbol Grounding, Phenomenology, Embodied Cognition, Intentionality, Mental Model,
Cognitive Model
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1. Introduction

In conversations about artificial intelligence, the common sentiment is that the concepts
of such a system are fundamentally limited by the concepts of its designer. If complex
concepts are composed of more basic concepts, so the reasoning, and the most basic
concepts of an artificial system are provided by its designer, then the designer’s limitations
‘carry over’ to all the concepts the system can ever have.

The designer’s human concepts are useful for systems with a human body, but probably
not optimal to solve every problem and certainly problematic for a system on wheels and
with infra-red vision. It appears paradoxical to suggest the design of a system that is
independent from the concepts of its designer.
A way out of this paradox is represented by artificial general intelligence which is

supposed to kick off a technological ‘singularity’, where one artificial system develops a
better one completely autonomously, without the involvement of human designers and their
limited concepts. Eventually, such a development is supposed to result in an explosion in
artificial intelligence that rapidly exceeds human abilities.
Symptomatic for the field of artificial general intelligence is, however, that it ignores

potentially fundamental conceptual limitations of artificial systems. If the initial artificial
intelligence system (i.e. the ‘seed AI’) is developed from essentially human concepts, how
can artefacts of this system ever be supposed to exceed this foundation?

1.1. Hypothesis

Any intelligent system must generate its most basic concepts autonomously. To establish
such a system requires a lot of philosophical groundwork that mostly revolves around the
following question: can artificial concepts be actual concepts?
This question touches the philosophy of mind, semiotics, the cognitive sciences, and,

last but not least, machine learning. To provide an answer is not only of theoretical use.
In fact it can provide practical, workable systems.

A system that creates its own concepts would be completely independent from human
concepts that might require a human body and the according sensorimotor apparatus.

2



1. Introduction

It could learn to solve problems by interacting with environments that the human mind
cannot even conceive of.

To describe and, eventually, to simulate the initial generation of concepts in a cognitive
system, however, requires a theoretical foundation. How do cognitive systems represent
real things with their minds? Is this relationship the result of a passive discovery or an
active construction of reality? How does the transition between reality and mind take
place, what are its conditions, and what is lost in translation?
Independent from its achievements, no computer system will ever be conceded ‘real’

mental content without an explanation for how this is supposed to be possible. Without
answers to the philosophical questions at play, any attempt to develop truly autonomous
artificial intelligence could be nipped in the bud as essentially ‘non-cognitive’.

A solution to artificial concept creation must therefore be twofold. On the one hand, it
must provide a theoretical explanation for how to ground the mental content of cognitive
systems in their interaction with external reality. On the other hand, this theory must
also be translated into a workable system that surpasses similar systems in some task
that is relevant to cognitive systems.

The success of the second part as a simulation for cognitive systems requires that the
first part is accepted as a theoretical explanation for basic concepts.

1.2. Premises

The present approach has two particular premises that make it unique. Both are ne-
cessary to obtain grounded symbolic mental representations and both follow from a
phenomenological view on cognition.
Phenomenology is a family of philosophical theories on the structure of subjective

experience and consciousness. It investigates how reality appears to cognitive systems
and how these appearances interact to generate a more complex understanding of the
world. (Kockelmans 1999)

In contrast to the natural sciences, phenomenology is not based in elements that are
publicly accessible (e.g. the idea of a physical atom) but in the basic elements of subjective
experience (e.g. the redness of a flower)— also referred to as ‘qualia’ or ‘basic perception’.

These elements can be experienced by cognitive systems. In contrast to elements in the
natural sciences, however, they cannot be described entirely. No description can replicate
the feeling during the actual perception of a red flower.

This means that the system that has this perception as a whole also cannot be described
entirely. No observer has access to another system’s first-person-perspective. One cognitive

3



1. Introduction

system cannot fully take the perspective of another. Despite this inaccessibility, however,
the dynamics and relations between these unobservable entities can still be described and
simulated.

The question whether the simulating entities are also what they ought to simulate will
not, and cannot, be answered here. This question cannot be answered in principle and,
even more so, an answer would render most endeavours to truly autonomous concept
creation in artificial systems futile.
The present approach rather presents an extensive argumentation for premises that

are necessary for such a simulation. The value of these premises is put to the test by
implementing a system according to them and comparing it to related systems that solve
similar problems in a level playing field.

1.2.1. First-person-perspective

The first premise is to simulate the observer’s first-person-perspective, not the observations
that they might make of any other system.1

A simulation for the generation of concepts in cognitive systems requires a cognitive
model of these systems. Scientific models are mostly determined by the subject matter of
their domain. Accordingly, dissent concerning the appropriateness of a scientific model is
often a reliable indicator for an ambiguous definition of, or even a shift in, subject matter.

The subject matter of physics, for example, is quantified matter and energy. Accordingly,
the interpretation of physical models implies to accept numeric shapes as representations
for real amounts of matter and energy.
The subject matter of natural sciences is relatively well defined. Therefore, empiric

evidence can support or weaken natural models quite straightforwardly. A model is
supported by empiric evidence simply if an object exists such as the model describes it.
The model is inappropriate if no such object exists.

A model of radioactivity, for example, can be evaluated by determining whether objects
exist whose matter decays in a way such as the model describes it.

In cognitive sciences, models cannot be evaluated as easily. Obviously, the subject matter
of cognitive sciences is cognition. In contrast to natural objects, however, cognition can
be described from two equally legitimate but essentially incompatible perspectives—each
of which implies its own semantics.
The fact that the appropriateness of a cognitive model depends on the perspective of

the particular interpreter makes it much harder to incorporate empiric evidence. What is

1In fact, to still use the term ‘observer’ only makes sense when the intention is to emphasise a contrast
against third-person-perspective.
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1. Introduction

more relevant? The system’s own perspective or the perspective of an external observer?
A model may be veridical for one but not for the other.

Therefore, it is crucial to make this perspective abundantly: the following cognitive
model is generated from first-person-perspective and is based on the impressions of
subjective experience.

A cognitive model from first-person-perspective cannot be naturalised. Subjective
experience is premise to such a model like matter and energy are premise to a physical
model.

1.2.2. Phenomenal Content in Basic Perception

The second premise is that there is phenomenal content in basic perception.
Cognitive systems usually feature a mental model of their environment. An accurate

cognitive model, therefore, must also be the model of a mental model. From first-person-
perspective, the mental model of a real cognitive systems is composed of phenomenal
shapes that represent parts of external reality. The most basic of these shapes are basic
perceptions. To the system, its basic perception carries a particular phenomenal content.
Phenomenal content is a part of subjective experience. The perspective in subjective

experience is irreducible. John Searle makes this point, and that Charles Peirce and
Franz Brentano made it before him.

If mental models ground in phenomenal content and phenomenal content is perceivable
only from first-person-perspective, then another system’s mental model is essentially
unobservable. Scepticism concerning the possibility of artificial concept creation is nurtured
from reasonable doubts about such an axiomatic justification of unobservable content.
To its own system, however, phenomenal content is true exactly and only because it

cannot be different from how it appears. The fact that phenomenal content can only be
justified axiomatically is crucial for the grounding of mental content.
The axiomatic justification of phenomenal content can only appear dubious to an

outside observer for whom the content is simply not how it appears. To an observer,
another system’s phenomenal content must consist of the observer’s own basic perception.
How else could they perceive it in the first place?
The concepts of a system are always constrained to phenomenal shapes in its own

structure. These shapes are the only way for the system to conceive of the world.
This limitation, and the conceivability of this limitation for anyone but this system, is
undisputed in real cognitive systems.

If this is true for the content of real cognitive systems, however, then it must also be true
for the content in an accurate computational simulation of it. To concede unobservable
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phenomenal content to biological systems but not to computational ones lacks justification
and hinders progress in computational symbol grounding.
Simulating autonomous concept creation requires to concede phenomenal content to

computational systems. In the following, two arguments in support of this statement are
established. The first argument is that the domain of cognition is first-person-perspective
and the second is that phenomenal content is impossible to observe.

1.3. Goals

Our premises allow to postulate specific phenomenological entities and processes in a
computational simulation. The goals of this project can only be achieved if these premises
are accepted.
The theoretical goal of this work is to open another route to simulating cognition.

One that is independent from the anatomical or even physical particularities of cognitive
systems as we know them.
It must remain unclear whether a simulation is actually cognitive and its observable

processes really necessary for the generation of a real mental model. For the same reasons,
it must also remain unclear whether this is the case in any other system beside oneself.
The practical goal, eventually, is to provide such a simulation and use it to solve

particular problems in machine learning. According to the evaluation at the end of this
work, such systems are practically relevant, but the problems that they solve have so far
led a rather shadowy existence in research.

1.3.1. Theoretical Goal

The theoretical goal of this work is not to determine whether machines have a mind.
Instead, a general argument for the impossibility of observing the mind of another system
is to be established. This argument is based on a comprehensive presentation of the
philosophical concept of intentionality.

From this presentation, specifications are derived that meet some of the conditions for
what critics of artificial intelligence call ‘intentional content’. This content is reduced back
to phenomenal appearances and these in turn to a stream of unconscious information
exchange between the system and its environment. Such an approach has strong roots in
the field of embodied cognition and goes way back to Charles Peirce and Immanuel Kant.

There are two main reasons why approaches to the problem of artificial concept creation
have not been accepted from philosophical points of view.

6



1. Introduction

The first reason is that artificial intelligence research has applied a soft interpretation
to this problem. In the following, it is instead presented as a hard problem and it is
pointed out why solutions for a soft interpretation do not help to solve the hard part.

The second reason is a conflation on the philosophical side between computer systems
and their formal description. The limitations of formal symbol manipulation are actually
only restrictions for the description of a system, but not for the system itself.
These two points result from two incompatible perspectives on mental representation.

The former is mostly taken by the cognitive sciences (e.g. Harnad 1990; Steels 2008). The
latter is mostly taken by the philosophy of mind (e.g. Searle 1993; Sun 2000). These two
perspectives are presented in detail and their influence on conceptions of the problem is
shown.
The explicit and exemplary presentation of these points makes it possible to better

understand the terminological incompatibilities between the philosophy of mind and
artificial intelligence research, and to overcome them in the future.

1.3.2. Practical Goal

The practical goal is the simulation of a cognitive system. This goal is achieved if the
resulting system satisfies the three following requirements.
Firstly, the system must be able to subdivide any real environment into discrete

representations. These representations are not necessarily unique for a particular segment
of external reality and these segments are not unique for a particular representation.
This is due to the fact that a single mental representation can refer to different external
referents and that a single referent can be mentally represented in different ways depending
on the context.

The environment ‘enters’ cognitive systems as a sequence of information. This sequence
is segmented, the segments are combined into objects, and the objects are mentally
represented by phenomenal shapes.

Despite cultural or individual differences, different people seem to be carrying out these
processes very similarly. As a result, knowledge about the world coincides among different
minds.2

Secondly, these representations must enable the system to better predict events in the
environment. Cognitive systems derive expectations about future observations from their
mental models. Specialised models for specific environments allow the system to predict
future events with high accuracy.

2This epistemological agreement is also due to the fact that we have access to the same external reality.
Without already having a similar physical and neurological set-up, however, this would not be possible.
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Cognitive systems perceive the world deterministically: apparently random events are
explained through a hidden state of the world and this state is mentally represented
in the system’s mental model. In general, cognitive systems counteract uncertainty by
introducing new representations to explain unexpected events.
Thirdly, these representations must enable the system to better perform goal-directed

interaction. In real cognitive systems, mental representations enable successful problem
solving and the achievement of various goals, depending on the current needs of the
system.
The broad applicability of the same mental representations to achieve different goals

suggests that the current task itself is not part of their structure. Mental models must
be goal-agnostic in order to enable the transfer of knowledge about the dynamics of the
environment from one task to another.
In order to determine whether these goals have been achieved, the developed system

is compared with a baseline approach. Every goal is considered to be achieved if the
developed system ‘outperforms’ this baseline. The performance with regard to the first task
is inextricably linked to the purpose of simulating cognition. Its success depends therefore
strongly on the applied conception of cognition. The applied conception is described
in detail. Performance in the second and third task can be objectively determined by
metrics from supervised and reinforcement learning.

1.4. General Approach

In conclusion, two equally important measures have to be established to achieve autonom-
ous artificial concept creation. In the following, arguments in favour of these measures
are provided because, in the past, they have not been taken into sufficient account.
The first point is that there must be a clear distinction between the descriptive entity

and the entity being described. This is motivated by the fact that critique on artificial
intelligence from the philosophical side concerns mostly the symbolic procedures that
describe computational simulations of cognition, not the physically instantiated simulations
themselves—which are neither symbolic nor syntactic.
This applies in particular to computational cognitive models and the mental model

that they describe as a component of cognitive systems. Criticism of a model does not
automatically also apply to what it describes. The fact that an artificial system can be
described by a computational cognitive model is completely independent from whether
the system has mental content as we perceive it in ourselves.
The second point is that computational simulations that implement certain models of
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cognition are not only another description, but exactly what is being described by these
models. It is readily accepted that the biological entities that are described by cognitive
models (e.g. other humans) have mental content. There is no valid reason to reject the
same in computational entities.
A computer system can mimic cognitive processes. In fact, the subjective properties

that these processes exhibit in biological systems, however, are widely rejected in com-
putational simulations. But there cannot be any proof that natural cognitive systems
are phenomenologically any different from artificial ones: subjective experience cannot be
observed in either of them. There is no reason, for example, to exclude artificial cognitive
systems from the problem of other minds.3

Note that the claim is not that computer simulations have subjective experience. The
claim is that the truly autonomous creation of concepts requires subjective experience.
For a simulation of concept creation, subjective experience has to be supposed. Without
subjective experience, there can be no content in basic perception and without content in
basic perception, there can be no actual mental representation.
Subjective experience cannot be described from third-person-perspective. What can

be described, is the emergence of subjective experience from elements that are not yet
perceptible to the observed system. The semantic autonomy of the system’s mental
model can be secured with the ability to autonomously generate its most fundamental
perceptions from unconscious sensorimotor activation. The field of embodied cognition
offers several explanations along these lines.

Essentially, the simulation of a cognitive system has to be thought of not as a description,
but as the instance of a cognitive system, similar to a robot-assisted assembly line, which
simulates human workers to not describe the construction of a product, but to instantiate
this exact product instead.

The product of this process must be conceived of as indistinguishable from the product
of the real process just like a machine-manufactured car is indistinguishable from a man-
made car.

1.5. Proceeding

This work continues as follows. In the following part on the philosophical foundations,
the three main problems that the philosophy of mind has with approaches to artificial
intelligence are presented.

3This problem raises the question of how to justify the assumption that other people have a mind when
all that one can perceive of them is their physical appearance.
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The relationship between these problems and mental representation is illustrated, and
an interpretation of Immanuel Kant is provided that explains these problems.

In the next chapter two interpretations for the symbol grounding problem are presented.
The soft interpretation on the one hand, which is mostly applied by the cognitive sciences,
and the hard interpretation on the other hand, which is mostly applied by the philosophy
of the mind.
Solving the symbol grounding problem requires a hard interpretation. Arguments are

provided against the most popular case for the impossibility of subjective experience in
computational systems. A hard interpretation of the symbol grounding problem implies
the problem of autonomous artificial concept creation.
The next part provides a theoretical background on theories of embodied cognition.

The conception of cognition presented by them enables to infer conditions for the initial
generation and constituents of basic perception.

After that, John Searle’s theory on intentionality is detailed as well as its implications
for the structure of a mental model that is composed of phenomenological entities. This
part is concluded with a semiotic formalisation of the mental representations in such a
model.
The next part merges the philosophical with the practical half. It provides a formal

definition for mental models. This definition is derived from the previous presentation
of intentionality and the selected theories of embodied cognition. It provides the formal
basis to determine the procedures behind grounding symbolic mental representations.
The following part presents these procedures and how they apply to basic perception

to generate a model for complex and partially observable environments. In the last part,
a baseline approach is presented that eventually enables to evaluate the results.
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2. Three Major Problems in Artificial
Intelligence

Artificial intelligence and philosophy share a history of mutual misunderstandings and
conflicts. A lot of dispute might have been avoided if terms and domains would have
been made more clear. Clear not just in the jargon of the arguing party, but clear in
words the other side could be expected to understand by using their own well established
and successfully applied terminology.
Prime example is the case of Hubert Dreyfus, who very accurately—but no less

aggressively—criticised the efforts and optimistic prospects of early artificial intelligence.1

The two world views held by Dreyfus and the artificial intelligence pioneers of the
seventies seemed fundamentally incompatible. At the epicentre of this conflict is the
capacity of cognitive systems to mentally represent parts of external reality in a way like
natural cognitive systems do. The possibility of a computational implementation of this
capacity flares emotional responses till this day.

This conflict yielded three major problems in artificial intelligence. For some, practical
solutions have been found while others remain unsolved or simply lost the attention of
research. The three problems are the frame problem, the problem of vanishing intersections,
and the symbol grounding problem.

In this chapter, these problems are presented to provide a historical background for the
symbol grounding problem more than an extensive analysis. Throughout the rest of this
work, however, these problems are referred to over and over again to show similarities in
their symptoms and, more importantly, their common cause.2 In the following chapters,
an argument is established according to which solving the symbol grounding problem
implies solving to the other two as well.

1The context of events is described in detail by McCorduck (2004).
2In general terms, their common cause is a failure to communicate implicit conceptions about the
processes and structures that are involved in mental representation.
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2.1. The Epistemological Frame Problem

Initially, McCarthy and Hayes (1969) presented the frame problem as a problem of first
order logic. Later, it obtained a wider epistemological interpretation through Daniel
Dennett. He presents the epistemological frame problem as follows.

When a cognitive creature, an entity with many beliefs about the world,
performs an act, the world changes and many of the creature’s beliefs must
be revised or updated. How? It cannot be that we perceive and notice all
the changes (for one thing, many of the changes we know to occur do not
occur in our perceptual fields), and hence it cannot be that we rely entirely on
perceptual input to revise our beliefs. So we must have internal ways of up-
dating our beliefs that will fill in the gaps and keep our internal model, the
totality of our beliefs, roughly faithful to the world. (Dennett 1981, p. 125)

The question is: how can an agent determine those beliefs about its environment that
have to change due to its actions? Humans tend to assume that, for any one action, only
a limited number of beliefs about the world have to be revised.

If you drop a glass of milk, for example, you probably consider cleaning the floor of the
room you are currently in. You do not even have to think about cleaning the living room
floor if you dropped the glass in the kitchen.

The assumption that updates concern only parts of a belief system is not only justified
by observing one’s own cognitive processes. There are also practical reasons which indicate
that any action can only concern some beliefs. In time-critical situations, for example, it
is plain impossible to update every belief after a particular action.
So how do humans know the limits of the consequences of their actions without even

considering outcomes that are particularly improbable? How can a system of beliefs be
updated efficiently and effectively?

2.1.1. Approaches

One potential solution suggests that actually all beliefs are considered. Current computer
hardware is just not fast enough to simulate this in a timely manner. As computer chips
become faster, the problem might simply disappear.
Empiric evidence suggests something else. Humans are capable of object and face

recognition in a time interval that allows one hundred sequential neural processing steps at
most (Feldman and Ballard 1982). This has been interpreted as argument for a massively
parallel implementation of the respective processes (intitially by Rumelhart 1989; later e.g.
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in the ‘global workspace theory’ of Baars 1993). Considering the amount of beliefs that
humans tend to have, however, it appears as if even massively parallel mental processes
never update all of the system’s beliefs.
It seems rather as if only those beliefs receive an update which are somehow relevant

to the action. If only some beliefs are labelled as ‘relevant’, the system is relieved of quite
some overheads.
John Haugeland called such an approach a ‘cheap test strategy’. ‘The cheap test

strategy looks over everything quickly, to tell “at a glance” most of what’s irrelevant
(hence unchanged).’ (Haugeland 1987, p. 83)

Of course, this strategy presupposes a ‘prior categorization of events and facts, based
on which types of events affect which types of facts’ (ibid., p. 83). Dropping a glass of
milk usually affects the floor and not the ceiling. After dropping a glass of milk, therefore,
beliefs about the floor are more relevant candidates for an update than those about the
ceiling.
Relevant beliefs depend on context. To determine relevant beliefs ahead of time,

therefore, implies a fixed bias when facing outcomes that are plain impossible to predict
(e.g. arbitrary actions of another cognitive system).

Even more so, to determine which beliefs are relevant, again, the system needs to check
every single belief. Haugeland attested that ‘the system must scan the entire model,
relying on some easy sign to rule out most entries without further examination’ (ibid.,
p. 83).

Only after every single belief has been checked, the system can determine which beliefs
are relevant at the moment. Again, computational systems are either too slow or the
number of beliefs about the real world is too large to handle.

Therefore, Haugeland presented an alternative to cheap tests. ‘The alternative, sleeping
dog, strategy is to let everything lie, unless there’s some positive reason not to. That is,
unless there’s some positive indication that a particular fact may be affected, the system
will totally ignore it, without even performing cheap tests.’ (ibid., p. 84)

This description raises the question how to determine the effect of an action in a
particular situation. Answering this question requires to determine how situations are
recognised by cognitive systems in the first place. This leads straight to the problem of
vanishing intersections in the next section.

The frame problem also exposes a more fundamental issue: if the designer of an
autonomous system decides for the system (e.g. what is supposed to be relevant),
then the system can hardly be called ‘intelligent’. In general, a designer of artificial
intelligence must provide systems with abilities that enable, rather than determine,
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?
Figure 2.1.: Entities in Harnad’s Hybrid Design.

intelligent behaviour.

2.2. The Problem of Vanishing Intersections

One of these abilities is the acquisition of object concepts. Effectively, this is the
autonomous generation of internal representations for various parts of the environment.
Implementing concept acquisition in an artificial system requires to determine how

objects and situations can be represented, how these representations relate to beliefs, and
how this relation is adjusted by the system in case the environment changes. In cognitive
systems, these representations are mental.

Mental representations are internal states that reference external entities. How can an
external entity yield an internal state that presents to the system a category (i.e. type)
for this particular entity (i.e. token)? How can this system arrive at the content that
there is a chair? One popular approach in artificial intelligence is pattern recognition.

Visual pattern recognition enables, for example, to recognise a picture as the picture
of a chair. Despite the fact that general object recognition is among the most common
human abilities, it is still hardly matched by artificial means.3

Humans recognise objects from projected visual patterns on their retinas. Stevan Harnad
proposes that the patterns in these projections are recognised in virtue of component
features that are present in every projection of the same distal object. He refers to those
components as ‘invariants’.
A set of invariants can be associated with a particular label. So, indirectly, the label

now refers to all the individual projections that contain this set of invariants. Thus, labels
can provide names for the distal objects.

3Recently, deep learning (i.e. multi-layered artificial neural networks) has made major progresses in
terms of pattern recognition. In contrast to human pattern recognisers, however, it still lacks the
fundamental cognitive ability to extend structural complexity (i.e. neurons or layers of neurons) when
necessary.
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The cognitive process of recognising zebras, for example, involves 1) a real zebra, 2) the
retinal projection of a zebra, 3) invariants in this projection (e.g. stripes and a horse-
shape), 4) and the associated label ‘zebra’. Figure 2.1 illustrates these entities.

As Harnad points out, however, such structural intersections among all the projections
of individual objects have not been found. He calls this phenomenon ‘the problem of
vanishing intersections’.

‘It has been claimed that one cannot find invariant features in the sensory projection
because they simply do not exist: the intersection of all the projections of the members
of a category such as “horse” is empty’ (Harnad 1990, p. 344, footnote 20). According to
Harnad, however, ‘the reason intersections have not been found is that no one has yet
looked for them properly.’ (ibid., p. 344, footnote 20)

Unfortunately, even if such intersections exist, they cannot explain how humans recognise
vastly different things as members of the same category. Consider a children’s depiction
of a horse and compare it to the photograph of a horse. Neither colour nor shape need to
match to be able to recognise the intended animal.
Different lighting alone an completely change the visual information you receive from

members of the same category. Instead of structural intersections, the various different
members of a category feature more of a ‘family resemblance’.
Ludwig Wittgenstein described his concept of family resemblance with the example

of games. “Consider for example the proceedings that we call ‘games’. [...] look and
see whether there is anything common to all.—For if you look at them you will not see
something that is common to all, but similarities, relationships, and a whole series of
them at that.” (translated4, Wittgenstein 2010, § 66)
Undoubtedly, Wittgenstein spoke about what Harnad calls ‘the problem of vanishing

intersections’. In contrast to Harnad, however, Wittgenstein claims that there are no
intersections.

2.2.1. Approaches

In light of this critique, two major alternatives to Harnad’s invariants can be considered.
The first alternative is presented by Karl MacDorman. He describes that ‘the same

invariant features need not be present for every instance of a category. Any one of a
disjunctive set of invariant features, sampled from any number of sensory modalities, can

4„Betrachte z.B. einmal die Vorgänge, die wir ‚Spiele‘ nennen. [...] schau, ob ihnen allen etwas gemeinsam
ist.—Denn wenn du sie anschaust, wirst du zwar nicht etwas sehen, was allen gemeinsam wäre, aber
du wirst Ähnlichkeiten, Verwandtschaften, sehen, und zwar eine ganze Reihe.“ (Wittgenstein 2010,
§ 66)
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Figure 2.2.: Reversible Duck-rabbit Figure (Honeychurch 2013).

serve to indicate sensorimotor invariance at a more abstract level.’ (MacDorman 1997,
p. 169)

An invariant according this understanding is therefore not an intersection of patterns
but their union. Not all invariants need to be present in the member of a particular
category, it suffices if only some of them are.
Wittgenstein considered this idea as well.

But if someone wished to say: “There is something common to all these
constructions—namely the disjunction of all their common properties”—I
should reply: now you are only playing with words. One might as well
say: “Something runs through the whole thread—namely the continuous
overlapping of those fibres”. (translated5, Wittgenstein 2010, § 67)

MacDorman himself observes that ‘in certain cases, the same category will be activated
by structurally dissimilar sensory projections and, in other cases, different categories will
be activated by structurally similar projections’ (MacDorman 1997, p. 170).

This statement is interesting for two reasons. In the first part, he describes not only a
problem of vanishing intersections but also a problem of overwhelming diversity in each
category. In the second part, he even describes the complete irrelevance of structural
properties for some categories.

5„Wenn aber Einer sagen wollte: ‚Also ist allen diesen Gebilden etwas gemeinsam,—nämlich die Dis-
junktion aller dieser Gemeinsamkeiten‘—so würde ich antworten: hier spielst du nur mit einem Wort.
Ebenso könnte man sagen: es läuft ein Etwas durch den ganzen Faden,—nämlich das lückenlose
Übergreifen dieser Fasern.“ (Wittgenstein 2010, § 67)
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There are cases, where even the exact same pattern is recognised in two different ways.
Neither conjunctive nor disjunctive invariants can account for this. Consider, for example,
the reversible duck-rabbit in figure 2.2. The image can be recognised as a duck and as a
rabbit. The underlying pattern, however, is always the same.
The second alternative to Harnad’s approach explains such phenomena with context-

dependency. Dreyfus describes this context-dependency in more detail.

A phenomenological description of our experience of being-in-a-situation
suggests that we are always already in a context or situation which we carry
over from the immediate past and update in terms of events that in the light
of this past situation are seen to be significant. (Dreyfus 1992, p. 288)

Following from this point, it can be speculated that categories do not appear to be
determined by the features of their members because objects are not recognised only in
virtue of their structure. MacDorman arrives at the same conclusion. ‘Taken by themselves
feature detectors are insufficient to ground the vast number of symbols required to represent
all the different kinds of potentially recognizable things.’ (MacDorman 1997, p. 171)
The performance of human pattern recognition might be explained with structural

invariants in a particular context. In pitch-black darkness, the visual appearance of a
horse cannot play any part in recognising it. In this context, you do not even try to
recognise a horse by its visual appearance.

Unfortunately, Dreyfus points towards computational trouble with context-dependency:
‘if each context can only be recognized in terms of features selected as relevant and
interpreted in terms of a broader context, the AI worker is faced with a regress of
contexts.’ (Dreyfus 1992, p. 289)
A consequential implementation of this principle, he argues, yields problems. ‘This

need for prior organization reappears in AI as the need for a hierarchy of contexts in
which a higher or broader context is used to determine the relevance and significance of
elements in a narrower or lower context.’ (ibid., p. 288)
The question is, whether it is possible to implement such a hierarchy contexts in a

computer system.

2.3. The Symbol Grounding Problem

According to Harnad, computational systems that perceive their environment in virtue
of symbolic representations are confronted with an impossible task. “Suppose you had
to learn Chinese as a first language and the only source of information you had was a
Chinese/Chinese dictionary” (Harnad 1990, pp. 339–340).
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To understand Chinese in virtue of the shapes of Chinese signs alone appears very
unlikely already. To learn it without any prior knowledge about language in general,
however, is hopeless at best. (Harnad 1990)

Reason for this hopelessness is the character of symbolic content. According to Harnad,
the content of symbols is not intrinsic to the symbol like it is with pictures or iconic
illustrations. Instead it must be provided by an interpreter (e.g. someone who understands
the entries in the dictionary).
A computer programme might be able to reproduce the entries in a Chinese/Chinese

dictionary. Without their interpretations, however, it can only receive and produce the
shapes of these symbols, not their content.6

The symbols and the symbol manipulation, being all based on shape rather
than meaning, are systematically interpretable as having meaning [...] But
the interpretation will not be intrinsic to the symbol system itself: it will be
parasitic on the fact that the symbols have meaning for us, in exactly the
same way that the meanings of the symbols in a book are not intrinsic, but
derive from the meanings in our heads. (ibid., pp. 338–339)

Without content, the system cannot have an actual belief about, or an actual repres-
entation of, anything. The content any symbolic representation appears to have is in
fact content only in the mind of its interpreter, not in the observed structure itself. The
representations in an observed system, therefore, are actually only representations to the
observer but not to their system.

The frame problem and the problem of vanishing intersections both ask for appropriate
internal representations as well. They do this by pointing out two different inadequacies
in current conceptions of mental representation.

The frame problem emphasises the overheads that representations require. The problem
of vanishing intersections emphasises the inability to imitate the various types of relation
that real mental representations can be in with their external referents.

Accordingly, Harnad argues that both are only sub-problems to the symbol grounding
problem (Harnad 1990, p. 339, footnote 6; Harnad 1990, p. 344, footnote 20).

6Unless expressed otherwise, mental content and meaning are considered as synonyms. Consider this
in contrast to the two classical conceptions of meaning according to Gottlob Frege. Fregean sense
accords roughly to what is here called ‘mental content’ and Fregean reference to what is here called
the ‘referent’ of a mental representation.
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2.3.1. No Content in Symbol Systems

According to Harnad, “the symbol grounding problem is referred to as the problem of
intrinsic meaning (or ‘intentionality’)” (Harnad 1990, p. 338). He gives credit to Searle
for the original formulation of this problem.

Harnad also refers to Searle’s Chinese room argument as another instance of the symbol
grounding problem. The Chinese room argument goes as follows.
Searle differentiates two ambitions in artificial intelligence. On the one hand, there

is weak artificial intelligence as the idea that artificial systems which exhibit intelligent
behaviour simulate a mind. On the other hand, there is strong artificial intelligence as
the idea that systems that show intelligent behaviour actually have a mind. The Chinese
room argument is directed against the latter.
The line of thought behind strong artificial intelligence is that, without any empirical

access to the supposed mind of another system, we cannot but regress to observable
behaviour: if a system behaves intelligently, then it must be intelligent. To deny such a
system a mind would be arbitrary and hardly justifiable.
Searle rejects this line of reasoning. He argues that we can very well go ‘below’ mere

observation by imagining the experiences we had, if we were to be a crucial component of
the system in question. From the perspective of the system, we can abandon behaviourist
criteria in favour of examining the system’s mental content first hand.
In a symbol system, so Searle, no content were to be found in virtue of such an

examination. Symbol systems are purely formal: They manipulate only the shapes of
symbols. They have access neither to what they contain (i.e. their content) nor to what
they refer to (i.e. their referents). As the parts of a symbol system, therefore, we would
be isolated from the content of the symbols that it manipulates.

Therefore, symbol systems can exhibit the most intelligent behaviour and, still, it would
be invalid to call them ‘intelligent’. If the components of such a system are isolated from
content, then so is the system as a whole. A system that is isolated from content cannot
be intelligent.

2.3.2. The Chinese Room Argument

Searle illustrates this argumentation with a thought experiment. He describes himself
sitting in a closed room. He assumes to have a rule set at hand which allows him to
react to unknown Chinese signs that he receives from outside. The reaction dictated by
this rule set is again a Chinese sign that can be understood by Chinese speakers as an
appropriate reply to the Chinese statement he received before.
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In this setting, Searle exchanges signs without understanding any of them. If the
observer was to start a conversation with him, Searle would be able to reply as if he
understood Chinese. Although conversing fluently and elaborately in Chinese, however,
the content of the signs would not be accessible to him.
According to Searle, therefore, it is not valid to concede a mind to a system solely on

the basis of observed behaviour. Instead, intelligent behaviour is neither necessary, nor is
it sufficient, for a mind. (Searle 1980b)

In some respect, the Chinese room argument is a parody on the Turing test. It copies
the premises of Alan Turing’s imitation game, where a human has a conversation with
an artificial system via chat. If the system is able to convincingly imitate a human in
written conversation, according to Turing, we have no reason to reject its ability to think.
(Turing 1950)

By entering the system in question, Searle obtains an ‘inside’ view on all the processes
and components at play—and content is not among his observations.

He reinforces this intuition by making himself part of the system which shows that not
even he—a cognitive system principally capable of understanding—would have access to
content in such a setting.
Within the room, Searle acts as an indicator for content. He assumes that content in

the indicator person is necessary for content in the whole system. Hence, if he would not
have access to content, then the whole system would not as well.

2.3.3. Harnad’s Approach

Harnad tries to find a way around the semantic limitations of symbol systems. He accepts
the premises as they are presented by Searle but also assumes that the content of symbolic
representations can be grasped by connectionist networks.
Systems that implement this method are supposed to feature ‘non-symbolic’ or ‘sub-

symbolic’ components besides the symbolic representations considered by Searle. Harnad
calls them ‘hybrid’, accordingly.
The central procedures in such a system operate on the entities from figure 2.1 on

page 15: 1) distal objects, 2) iconic projections, 3) invariant features, 4) and category
names. He describes these procedures in a hybrid system as follows.

Icons, paired with feedback indicating their names, could be processed by a
connectionist network that learns to identify icons correctly from the sample
of confusable alternatives [. . . ], thereby reducing the icons to the invariant
(confusion-resolving) features of the category to which they are assigned. In
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effect, the “connection” between the names and the objects that give rise to
their sensory projections and their icons would be provided by connectionist
networks. (Harnad 1990, p. 344)

Three of these four entities present something else. Names present invariants, invariants
present icons, and icons present external objects. This transitive presentation makes
invariants and names re-presentations. Invariants represent objects and names represent
icons.
Icons mediate the relation between invariants and objects just like invariants mediate

the relation between names and icons. In symbolic representations, the content of the
representation provides this mediation between symbolic shape and external referent. As
a consequence, invariants could be said to be iconic representations that contain images
and names could be said to be symbolic representations that contain invariants.
In Harnad’s model, therefore, category names are the shapes, invariants the content,

and icons the referents of mental representations. The connectionist networks identify
invariants and, therefore, they generate content that is independent from external inter-
pretation.
In his analogy with the Chinese/Chinese dictionary, Harnad effectively extends the

Chinese signs in the dictionary with icons that illustrate their meaning. By extending
the vocabulary of a system with iconic representations, he implies in analogy that an
illustrated Chinese/Chinese dictionary would suffice to learn Chinese as a first language.

Previous ambitions to discover structural invariants within these icons yielded the
problem of vanishing intersections. Harnad assumes, however, that supervised artificial
neural networks can find invariants that humans were unable to identify so far.

Harnad aims to solve the symbol grounding problem by designing a system that solves
the problem of vanishing intersections. Invariants are identified in patterns ‘to which
these names are assigned’ by one or many supervisors.
The need for supervision suggests that Harnad’s approach is motivated linguistically.

During language acquisition, there is social supervision according to linguistic conventions.
During the acquisition of elementary concepts, however, there is no such feedback.
Without the support of already existing linguistic content, therefore, there cannot be

supervision and Harnad’s hybrid system cannot learn anything.

2.3.4. Searle’s Objection

By presenting the Chinese room argument as another case of the symbol grounding
problem, Harnad implies that the absence of content in the Chinese room has the same
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reasons as the inability to learn Chinese from a Chinese/Chinese dictionary.
He specifically refers to Searle’s ideas on intentionality to justify this claim. In fact,

however, Searle does not share Harnad’s understanding of symbol grounding. (Harnad
1989; Searle 1993; Harnad 2001)

Already in his original formulation, Searle explicitly considers connectionist approaches
to the problem. “Suppose we design a program that [...] simulates the actual sequence of
neuron firings at the synapses of the brain of a native Chinese speaker when he understands
stories in Chinese and gives answers to them.” (Searle 1980b, p. 420)

Such a brain simulator is clearly a connectionist network like Harnad proposes it.7 Searle
rejects the connectionist approach by modifying the original Chinese room argument.

To see this, imagine that [...] we have the man operate an elaborate set of
water pipes with valves connecting them. When the man receives the Chinese
symbols, he looks up in the program, written in English, which valves he has
to turn on and off. Each water connection corresponds to a synapse in the
Chinese brain, and the whole system is rigged up so that after doing all the
right firings, that is after turning on all the right faucets, the Chinese answers
pop out at the output end of the series of pipes.

Now where is the understanding in this system? (ibid., p. 421)

Searle identifies the same problem as in the original thought experiment.

The problem with the brain simulator is that it is simulating the wrong things
about the brain. As long as it simulates only the formal structure of the
sequence of neuron firings at the synapses, it won’t have simulated what
matters about the brain, namely its causal properties, its ability to produce
intentional states. (ibid., p. 421)

Connectionist networks follow a symbolic syntax—just like any algorithm. They are
formal and susceptible to Searle’s critique as well.

The symbol grounding problem according to Searle is not that symbolic representations
have not been implemented properly but that symbols must be interpreted by the system
that is supposed to access their content.

7Notice that this is not supposed to suggest that brains are mere connectionist networks as they are
used in machine learning but that each brain features at least those functional properties that are
also part of connectionist networks.
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2.4. Kant on the Three Problems

“Thoughts without content are void; intuitions without conceptions, blind” (translated8,
CPR B 76). Kant’s famous quote provides another perspective on the three problems.
In Critique of Pure Reason, he presented his ideas on the interplay between intuition

and thought: the abstract content of thought is grounded in basic perception but external
events can only be perceived within a conceptual frame that is prior to experience itself.

In the 18th century, two philosophical camps argued about whether immediate perception
determines, or is determined, by abstract reasoning. Kant’s ambition was to consolidate
these empiricist and rationalist conceptions of cognition. His ideas can help to solve the
computational problem of artificial concept creation.
On the one hand, thoughts without content are void. Without a functional equivalent

to structural content, computational systems can only emulate thought. Such thought,
however, is devoid of intrinsic meaning.
On the other hand, intuitions without conceptions are blind. Without a functional

equivalent to conceptual context, computational systems can only emulate basic perception.
Such perception, however, is blind for the current situation.

To see why this is relevant to the three problems, consider the following theses.

1. The symbol grounding problem results from failure to consider structures ‘within’
mental representations. These structures provide mental representations with
autonomous content.

2. The frame problem results from failure to consider the structures that mental
representation are contained in. These structures provide a context that describes
the current situation.

3. The problem of vanishing intersections results from failure to use the current
situational context to help select a representation with appropriate content.

A solution to the symbol grounding problem requires content for the most basic
perception. A solution to the frame problem requires context for the most abstract
concept. A solution to the problem of vanishing intersections, eventually, requires to show
how content and context interact during mental representation.
For an example on this interpretation, imagine a system that detects red objects in

its environment. To identify an object as red, the shape ‘red’ must be associated with
the appropriate electromagnetic spectrum and the category determined by this spectrum

8„Gedanken ohne Inhalt sind leer, Anschauungen ohne Begriffe sind blind.“ (KRV B 76)
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must apply to the current sensor activation. The spectrum provides content for the shape
‘red’.

As soon as the lighting conditions change from white to green, however, the system is
literally blind for what it is supposed to detect. Without considering the current context
of light, the system cannot but tacitly concede static conditions at all times. To tackle
dynamically changing conditions, each content must relate to a situational frame.
Read like this, Kant’s quote can be taken as an emphasis on the equal importance of

content and context in mental representation. Most approaches to the symbol grounding
problem, however, are concerned only with content.
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Although mental representation is central to the symbol grounding problem, the underlying
conception that is applied is often left implicit. This is problematic because the cognitive
sciences and the philosophy of mind each feature incompatible conceptions of mental
representation. The following example illustrates such an incompatibility.
The shape ‘Elvis is dead’ can be interpreted as English. The observer of a system

that contains this shape can infer from it the content that Elvis is dead. According the
objective conception of mental representation, at this point, it is also valid for the observer
to infer that the system knows about the death of Elvis Presley as well.

According to the subjective conception, the content that Elvis is dead is only effective
in the mind of the observer (e.g. the system’s programmer). The system itself has no
access to this content. It does not understand a single English word and might associate
‘Elvis is dead’ with no content at all—or with any content unknown to the observer.

If the programmer chooses to interpret the machine inscription “Robin Roberts
won 28” as a statement about Robin Roberts [...], that’s all well and good,
but it’s no business of the machine’s. The machine has no access to that
interpretation, and its computations are in no way affected by it. (Fodor 1980,
p. 233)

In this quote, Jerry Fodor argues that artificial systems do not have access to the
content that their designer obtains from interpreting their internal shapes.
However, the reverse is true as well: the designer is just as isolated from potential

content that the system might associate with its internal shapes as the system is isolated
from its designer’s content.
According to the second conception, therefore, it cannot be inferred that there is no

content just because none has been observed. The Chinese room argument, however, tacitly
concedes that the mental content of another system (i.e. the room) could be observed.

This assumption is not only incompatible with how Searle usually conceives of mental
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representation (for details, see chapter 12), it also violates methodological solipsism (see
section 3.4).

However, before arguments are put forward to support these two assertions, the origins
of the mutually exclusive conceptions of objective and subjective mental representation
are elaborated below.

3.1. Objective and Subjective Representation

The two conceptions have been informally introduced by Uriah Kriegel as objective and
subjective representation.

The distinction between objective and subjective representation is closely
related to other, more familiar ones. Distinctions between personal and sub-
personal representations, narrow and wide representations, phenomenal and
psychological representations, may all turn out to be co-extensive with the
subjective/objective distinction. (Kriegel 2013, p. 163)

The content of objective representations in another system is intrinsic to the system’s
observer. According to this conception, the shape ‘Elvis is dead’ means to the system just
what it means to its observer. This conception requires the content of the representation
to be public (i.e. shareable and communicable among a community).
Objective representation is common to linguistics and widespread in cognitive sci-

ences—for example in the work of Harnad and Steels. It implements a propositional
conception of semantic content as it is the case, for example, in the description of a
cognitive system (i.e. a cognitive model).

The content of subjective representation in another system, in contrast, is intrinsic to
the system itself. According to this conception, the observed system’s interpretation of
‘Elvis is dead’ can yield vastly different content than an observer’s interpretation does.
This conception requires the content of the representation to be private (i.e. inexpressible
and accessible only to first-person-perspective).
Subjective representation is common in the philosophy of mind—for example in the

work of Searle and Tim Crane. It implements a conception of phenomenological content
as it is the case in the subjective experience of a real cognitive system.

In the following, first, representationalism is described as background for the subjective
conception. Afterwards, intentional psychology is presented as background for the objective
conception.

27



3. Two Conceptions of Mental Representation

3.1.1. Representationalism

Representationalism is the idea that the interaction between cognitive systems and external
reality is mediated. This implies that the objects of basic perception cannot be considered
to be objectively real in a literal sense of the word but rather mental representations of
reality.
The world of objects as it is perceived is actually just the phenomenal appearance

of one’s own mental model. This model consists of mental representations that present
inexistent objects to the mind which could be radically different from the real things
that caused them in the first place. These representations can also appear when their
external referents are absent, for example, during dreams or hallucinations, but also while
imagining or planning (for details, see chapter 10).
These representations are only perceived by oneself. Mental representations in other

systems can only be assumed through the analogical inference of other minds: Other
systems act and look similar to myself, therefore, their perception of self might also similar
to mine (see, among others, Hyslop and Jackson 1972; Searle 1980b, under ‘The Other
Mind’s Reply’; Melnyk 1994; Hyslop 2013, pp. 29–70).

Mental representations re-present inconceivable external reality by presenting it to their
system in the form of objects. Therefore, the content of subjective mental representations
is also referred to as ‘intentional object’ (e.g. Crane 2001). The locus classicus on the
cognitive nature of objects is Kant.

Up to now it has been assumed that all our cognition must conform to the
objects; but all attempts to find out something about them a priori through
concepts that would extend our cognition have, on this pre-supposition, come
to nothing. Hence let us once try whether we do not get further with the
problem of metaphysics by assuming that the objects must conform to our
cognition, which would agree better with the requested possibility of an a
priori cognition of them, which is to establish something about objects before
they are given to us. (translated1, CPR B XVI, second emphasis added)

To describe intentional content as the concept of an object enables an intuitive under-
standing. More appropriate is, however, to conceive of it as the object itself and of the

1„Bisher nahm man an, alle unsere Erkenntnis müsse sich nach den Gegenständen richten; aber alle
Versuche über sie a priori etwas durch Begriffe auszumachen, wodurch unsere Erkenntnis erweitert
würde, gingen unter dieser Voraussetzung zu nichte. Man versuche es daher einmal, ob wir nicht in
den Aufgaben der Metaphysik damit besser fortkommen, daß wir annehmen, die Gegenstände müssen
sich nach unserem Erkenntnis richten, welches so schon besser mit der verlangten Möglichkeit einer
Erkenntnis derselben a priori zusammenstimmt, die über Gegenstände, ehe sie uns gegeben werden,
etwas festsetzen soll.“ (KRV B XVI)
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shape as which this content appears as the object’s phenomenal appearance. (McGinn
2004; Strasser 2011)

Consider a plane trip. When you plan the journey, you do not imagine your luggage in
all of its detail. Instead, you process a simplified phenomenal shape as replacement for
the object’s structural complexity.

This replacement is the phenomenal shape of a subjective mental representation. This
representation only presents its structural content if necessary—for example as soon as you
need to claim your bag at the destination airport. The real referent of this representation
in external reality can be perceived only in virtue of this representation.

3.1.2. Intentional Psychology

A comprehensive model of cognition describes other systems with mental states just like
those we experience in ourselves. Intentional psychology assumes mental states in other
systems to enable the explanation and prediction of their behaviour.
According to intentional psychology, the mental state of a cognitive system consists

of content and an attitude towards this content. Carl’s knowledge that a bottle of beer
is in the fridge, for example, consists of the content that a bottle of beer is in the fridge
and his attitude of knowing that this is the case—in contrast, for example, to fearing or
hoping that a bottle of beer is in the fridge.

Carl’s going to the fridge can be explained by two mental states. For one, he desires,
and, for another, he believes, that a bottle of beer is in the fridge. According to a mental-
state-model of Carl, these two mental states are sufficient for him to go to the fridge:
they can explain his behaviour.

Describing the content of the mental state of another system is intricately problematic.
How do you describe something that is only accessible to the described system?

Even if this content could be observed, how could it be differentiated from the content
that the observation has to the observer? After all, the issue is to observe the content
that another system has and not to obtain the content that this observation might have
to oneself.2

One way to deal with this problem is to simply replace the unobservable elements with
ones that can be observed. Intentional psychology replaces the content of mental states
with representations for semantic content.

Following this strategy, mental states can be easily formalised as an ordered triple. The
triple (Carl, believes, ‘Elvis is dead’) formally describes Carl’s belief that Elvis is dead.

2This problem also concerns the semantic capacities of neural structures: observing neural correlates for
content is essentially different from having this content yourself.
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The linguistic shape ‘Elvis is dead’ is a proposition that stands for the content that Elvis
is dead. (Pitt 2013)

An objective representation presents semantic content to the observer of the described
system. To systems that are described as containing this shape, however, ‘Elvis is dead’
might mean nothing at all.
Intentional psychology is a family of theories that all deal with the unobservability of

mental content in the same way: by replacing it with an objective representation. This
effectively provides a propositional ground for models of cognition in the mental content
of the observer.
Intentional psychology is a way to describe mental representation and, therefore, it

applies to cognitive models. Representationalism, in contrast, is a hypothesis on how
cognitive systems conceive of reality and, therefore, it applies to real cognitive systems.

This is the difference between mental representation in intentional psychology and
mental representation in representationalism. This difference can be emphasised by the
question who some structure is a mental representation for, in contrast to just asking
what it is a representation of.

3.2. Representation in the Cognitive Sciences

Mental representation in cognitive sciences mostly follows the following description. “To
perceive a strawberry is, on the representational view, to have a sensory experience of
some kind which is appropriately related to (e.g., caused by) the strawberry” (ibid.).
Definitions of mental representation are formulated accordingly.

[To account for the properties of human cognitive capacities] we must posit
mental representations that can represent specific objects; that can represent
many different kinds of objects—concrete objects, sets, properties, events, and
states of affairs in this world, in possible worlds, and in fictional worlds as well
as abstract objects such as universals and numbers; that can represent both
an object (in and of itself) and an aspect of that object (or both extension and
intension); and that can represent both correctly and incorrectly. (von Eckardt
1999, p. 527)

Example and definition both share the same premise: mental representations reference
objects. If objects require the subjective mental representation of imperceivable external
reality, then the representation of an object can only be secondary to a prior mental
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representation in the mind of an observer so they can conceive of this object in the first
place.

The representation of an object depends on a prior representation because objects can
only exist due to the mental representation of inconceivable reality in the mind of an
observer.
Take the example of the strawberry. To explain a system’s perception of strawberries

with an internal shape that is supposed to represent strawberries tacitly introduces the
the observer’s own concept of a strawberry.

Without a prior reason to associate the internal shape with the concept of a strawberry,
there is in fact no ground for the assumption that the shape in the observed system ought
to represent strawberries at all.
Genuinely mental representation is the representation of otherwise inconceivable real

things. The representation of an object, on the other hand, can only be a secondary
description of this thing after it has already been conceived of it as an object.
Ambitions to solve the symbol grounding problem are held back by a confusion of

these conceptions. Ignorance for the difference between objective and subjective mental
representation lends itself to a conflation of representations in the description of a system
and representations in the actual system.
The Chinese room argument is an illustrative example for this, because the reader is

asked to locate the content of real mental representations in the mere description of a
real cognitive system.

3.3. The Physical Symbol Systems Hypothesis as a
Statement about Descriptions of Cognition

The physical symbol system hypothesis is another example. It states the following: “[a]
physical symbol system has the necessary and sufficient means for general intelligent
action” (Newell and Simon 1976, p. 116). This expresses a biconditional: if, and only if,
some thing behaves intelligently then it is a physical symbol system.

First of all, intelligent action is a behavioural criterion, not a cognitive one. A physical
symbol system might very well exhibit superhuman intelligence and, still, not provide any
insight into the processes of real cognitive systems.
However, ‘action’ can also be interpreted cognitively as the system’s manipulation of

its internal state. According to this wider interpretation, the physical symbol system
hypothesis states that symbol systems are necessary and sufficient for the intelligent
manipulation of mental representations. This interpretation is in fact suggested by Newell.
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The symbols that float everywhere through the computational innards of this
system refer to the road, grass and trees in an epistemologically adequate,
though sometimes empirically inadequate, fashion. These symbols are the
symbols of the physical symbol system hypothesis (Newell & Simon, 1976),
pure and simple. (Newell 1988, p. 421, citation in source)

Without knowing that the shapes that a symbol system manipulates refer to ‘the road’,
‘grass’, and ‘trees’, however, it also cannot be determined whether their manipulation is
indeed intelligent or not. Without being able to read Chinese, it is impossible to recognise
whether Chinese symbols are composed intelligently or not.

To determine the intelligent manipulation of another system’s internal representations,
therefore, requires content in the mind of an observer—external content about shapes in
the observed system. This external content has no influence on the observed system and
is independent from the content that these representations might actually have to the
system.
It follows that the physical symbol system hypothesis cannot be a statement about

cognitive systems but only about models of these systems. It merely claims that the
means for general intelligent action can always be understood symbolically, not that they
are essentially symbolic.

This is most striking when Newell describes representation as a fundamental necessity
for symbol systems.

The most fundamental concept for a symbol system is that which gives symbols
their symbolic character, ie, which lets them stand for some entity. We call
this concept designation, though we might have used any of several other
terms, eg, reference, denotation, naming, standing for, aboutness, or even
symbolization or meaning. The variations in these terms, in either their
common or philosophic usage, is not critical for us. (Newell 1980, p. 161)

According to Newell, representations are a fundamental requirement for the physical
symbol system hypothesis. As a consequence, content that enables representation in the
first place must be out of its scope.

Inconsistencies appear only under the assumption that symbol systems are what they
are merely supposed to describe. There is an important difference between the statement
that intelligent systems are symbol systems and the statement that intelligent systems
can be described by symbol systems.
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Even if cognitive systems use symbolic means for intelligent action, there still has to
be a part in such systems from which these symbols emerge. Without this ground to
symbolic representations, no system is capable to truly autonomous concept creation.

That intelligent action can be described by symbol systems, on the other hand, appears
to be a much more reasonable claim. A mere description of intelligent systems does not
need to concern itself with the origin of the manipulated symbols—as Newell emphasises
in the last quote.

3.4. Methodological Solipsism

The confusion of objective representations and subjective representations is only one
part of the problem. Another is that it is fundamentally impossible to describe anything
independent from prior content. Objective representation always depends on subjective
representation. In other words: describing mental representation violates methodological
solipsism.

Jerry Fodor identifies methodological solipsism as the general research strategy of the
cognitive sciences (Fodor 1980). Hilary Putnam explains methodological solipsism as “the
assumption that no psychological state, properly so called, presupposes the existence of
any individual other than the subject to whom that state is ascribed” (Putnam 1975,
p. 136).

According to a consequential interpretation of methodological solipsism, actual mental
representations must appear to an observer as though they were exclusively formal and
without content like the Chinese room and physical symbol systems in general. Fodor
explains why.

[T]he formality condition [...] is tantamount to a sort of methodological
solipsism. If mental processes are formal, then they have access only to the
formal properties of such representations of the environment as the senses
provide. Hence, they have no access to the semantic properties of such
representations, including the property of being true, of having referents, or,
indeed, the property of being representations of the environment. (Fodor 1980,
p. 231)

The content in real mental representations can be independent from other content.
Content that is truly independent from other content, however, also has to be independent
from the mind of the observer. To the observer, any system that operates according
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to truly independent content must appear exclusively formal as its content cannot be
observed from outside its system.
Searle uses the Chinese room to describe a cognitive system. But no description is

what it describes—it would not be a description after all but the thing itself instead. You
would not expect a description of Paris to yield the actual Eiffel tower. A description of
Paris also does not yield the Eiffel tower. It is hard to imagine anything that is yielded
by its description. The same is the case for ‘understanding’ in a description of cognition.

The absence of a correlate for understanding in the Chinese room in fact only strengthens
the analogy between the room and a real cognitive system. Just like in real cognitive
systems, there is no obvious equivalent for subjective mental content. This is not even
surprising but already implied by any approach that respects methodological solipsism.

3.5. The Primacy of Subjective Representation

The representations in a cognitive model are always and necessarily objective: they
represent conventional and communicable concepts to an observer. The representations
in a real cognitive system are subjective: they represent immediately inconceivable reality
to their system.
The similarity between objective and subjective representation is that both relate

shapes with referents. But only subjective representations reference immediate reality.
Objective representations reference subjective representations in another system instead.
To determine the difference becomes exceedingly intricate if mental representation is

considered necessary for object concepts in general. Concepts are necessary to describe
anything. An objective representation, therefore, must always be accompanied by a
subjective representation. Their content, however, is not the same.

Crane provides a criterion to distinguish both in virtue of their content. Subjective rep-
resentations carry phenomenological content and objective representations carry semantic
content.

There is [...] the phenomenological conception of content (‘what is conveyed
to the subject’). The propositional content of a perceptual experience is also
something that deserves the name of ‘content’. But it must be distinguished
from content in the phenomenological sense. The content in the phenomen-
ological sense is something spatiotemporal, concrete, particular and specific
to its subject. The content in the propositional sense is not. There are,
therefore, two conceptions of the content of experience, the semantic and the
phenomenological. I think that the phenomenological conception has a certain
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priority, since it is part of what is being modelled. Semantic contents can only
be ‘descriptions’ of this content. (Crane 2013, p. 245, emphasis added)

Crane grounds semantic content in phenomenological content. As a consequence,
objective representation must be secondary because, eventually, it can only describe
some other system’s subjective representation. A methodologically solispist approach to
modelling cognition, therefore, must adopt subjective mental representation.

A comprehensive, methodologically solipsist model of cognition also can only be achieved
indirectly: not by describing the content in mental representations but rather by describing
the processes that generate it. That the generated structures might not appear to an
observer as though they had any content is not only a side-effect but fundamentally
necessary for a veridical simulation of cognition.
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The subjective and objective conception of mental representation yield the two incom-
patible ideas of Harnad and Searle about what the symbol grounding problem actually
consists in. Lawrence Shapiro grasps the general ambiguity of the symbol grounding
problem nicely.

The ambiguity is in the notion of meaning. [. . . ] [T]hose who work on the
symbol grounding problem present it as a problem about how symbols come
to mean, or be about, or represent features of the world. However, conflated
with this problem appears to be another, concerning how people come to
understand the meanings of symbols. Although this distinction between how
a symbol becomes meaningful and how meanings come to be understood is
seldom noted, further reflection on the Chinese Room shows both questions
at play. (Shapiro 2011, p. 96)

According to Shapiro, one interpretation of the symbol grounding problem concerns
language while another concerns the mind. Unfortunately, there is no immediate relation
between linguistic and mental representation. Shapiro explains this by arguing that

one can imagine that philosophers have discovered the true theory of meaning
while psychologists remain at a loss to explain how people come to understand
the meanings of the expressions they use, or one can imagine that psychologists
have discovered how people come to understand language, despite philosophers’
failure to explain how symbols, including linguistic ones, acquire their meaning
in the first place. (ibid., p. 97)

He describes solutions to two different problems. One problem is particularly linguistic
while the other concerns meaning in general. Harnad deals with the former while Searle
deals with the latter.
Admittedly, Searle invites a linguistic interpretation of the Chinese room argument

by presenting it with linguistic (i.e. Chinese) signs. But his intention is to transfer this
example to any type of interaction between system and environment (i.e. perception and
action). He expresses this as follows.
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Suppose we put a computer inside a robot, and this computer would not just
take in formal symbols as input and give out formal symbols as output, but
rather would actually operate the robot in such a way that the robot does
something very much like perceiving, walking, moving about, hammering nails,
eating drinking—anything you like. (Searle 1980b, p. 420)

Searle determines that “the addition of such ‘perceptual’ and ‘motor’ capacities adds
nothing by way of understanding, in particular, or intentionality, in general” (ibid., p. 420).
Inside the robot, Searle is still “receiving ‘information’ from the robot’s ‘perceptual’
apparatus, and I am giving out ‘instructions’ to its motor apparatus without knowing
either of these facts.” (ibid., p. 420)

With the Chinese room, he uses the example of linguistic symbols to present a compre-
hensible implementation of the processes that are generally assumed to underlie cognition.
His explicit intention, however, is to transfer linguistic insights (e.g. from his speech-act
theory) onto mental content and representations. (Searle 1983)

Therefore, the Chinese room argument concerns not only how linguistic shapes obtain
content, but rather how content in general develops from something that does not have
content already.

Conventionalised linguistic content is necessarily secondary to the content in the minds
of individual cognitive systems. Unless explicitly transferred like Searle does it, therefore,
only the latter can contribute to understanding the former, not the other way round.

4.1. Two Symbol Grounding Problems

In the following, the linguistic understanding is presented as a ‘soft’ interpretation, and
the cognitive understanding as a ‘hard’ interpretation, of the symbol grounding problem.

The soft problem is the question how cognitive systems come to agree upon the content
of symbols. Harnad’s hybrid design and similar approaches (e.g. Steels 1999; Steels 2008)
propose solutions for this.
In Harnad’s design, agreement among cognitive systems emerges due to external

feedback that enables to identify invariant features. A similar process is at play in Steels’
‘Talking Heads’ experiment (Steels 1999).

All solutions to the soft problem follow the same general strategy: use the content one
type of representation has to the designer (e.g. invariant features) to ground the content
another type of representation ought to have to the system (e.g. category names).

In analogy to Harnad’s Chinese/Chinese dictionary, such a strategy can be illustrated
as a dictionary where, instead of definitions, there are iconic illustrations of what each
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Chinese symbol means. From these pictures, the system might be able to infer, for
example, structural invariants.
To Searle, such an approach is merely another Chinese room that simulates the

operations of an intelligent system formally. His critique applies to all computational
simulations of intelligence, independent from their particular implementation.
The hard problem is that no system can generate truly autonomous content if the

content of its most fundamental representations is already predetermined by design.
A solution to the hard problem needs to provide a fundamental explanation for content

that cannot simply regress to the content in another representation because that would beg
the question. This applies not only to symbolic representations but also to icons because
they must be interpreted as well.

The interpreter of an icon needs to know what properties of the referent are considered
relevant and which are not. Tim van Gelder calls this the ‘privileged means of processing’.
Without prior content in form of these means, the interpreter of an icon can have no clue
in what respect the structure of the icon and the structure of the referent are supposed to
be similar. (van Gelder 1999, pp. 133–137)
To return to the dictionary: you cannot provide images for the words in a dictionary

without presuppositions on the reader’s optical information processing. By presupposing
a particular kind of information processing, however, you tacitly exclude all other forms.

In fact, the hard problem is much similar to Harnad’s Chinese/Chinese dictionary with
the additional impediment that you cannot regress to anything but the shapes of Chinese
symbols. Imagine yourself principally unable to experience anything but the shapes of
Chinese symbols. How can content emerge in such a system?

4.2. In Favour of the Hard Problem

Despite Searle’s various clarifications on the problem that the Chinese room argument is
supposed to present (again in Searle 1993), Harnad’s interpretation as the problem of
understanding linguistic representations gained traction among various researchers.

Some even see the hard symbol grounding problem as a misinterpretation. It is argued
that

contrary to what several authors have misconstrued throughout the last three
decades, the [symbol grounding problem], which is clearly concerned with
providing internally manipulated symbols with concepts, does not refer to
intrinsically meaningful internal states of mind (Rodriguez et al. 2012, p. 34).
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Instead, so the argument, “grounded means the ability to pick out referents for manip-
ulated symbols and not the ability to make sense of symbols.” (Rodriguez et al. 2012,
pp. 31–32)
Some even perceive Searle’s hard interpretation as unfair and conclude that he does

not actually understand the problem at hand.

Was Searle’s paper (and subsequent philosophical discussion) based on igno-
rance or on a lack of understanding of what was going on in these experiments?
Probably partly. It has always been popular to bash AI because that puts
one in the glorious position of defending humanity. (Steels 2008, p. 6)

The soft interpretation of the symbol grounding problem is much more accessible and
therefore much more dominant than the hard interpretation. So dominant, in fact, that
reviews omit their essentially distinct ambitions. This contributes further to the conflation
mentioned by Shapiro.
In Taddeo and Floridi (2005), for example, Harnad’s hybrid approach to the soft

problem is presented next to Ron Sun’s approach to the hard problem. However, Sun
explicitly addresses the difference between his own and Harnad’s understanding of the
problem.

“Symbol grounding in the sense of linking symbols (symbolic representation) to lower-
level (subsymbolic) processes (Harnad 1990) provides a partial answer to the intentionality
question. But it does not fully answer the question.” (Sun 2000, p. 6)

He explains why he sees the soft problem only as a part of the whole symbol grounding
problem. “This is because the issue of how grounded symbols, and associated subsymbolic
processes, acquire their intentional content remains.” (ibid., p. 6)

As a consequence, Sun argues “that, instead of being narrowly and technically conceived,
symbol grounding should be understood in a broadened context in order to fully address
the intentionality question, which is at the heart of the matter.” (ibid., p. 6)
A preliminary reply to Rodriguez et al. in the spirit of Sun could therefore be that

‘providing internally manipulated symbols with concepts’ is fundamentally impossible
without ‘intrinsically meaningful internal states of mind’. And that ‘the ability to pick
out referents’ is impossible as well without ‘making sense of symbols’. Solutions to the
former two but not to the latter can only contribute to an incomplete model of cognition.

Harnad’s main intention might not be to provide an explanation for content in general.
His assumption that the frame problem and the problem of vanishing intersections are
only sub-problems, however, indicates that he concedes a particular relevance to the
symbol grounding problem that cannot be explained by a soft interpretation alone.
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Consolidating his argument with the philosophical concept of intentionality, eventually,
propagates a wider problem with the grounding of symbols. A problem that is neither
solved by his hybrid design, nor by Steels’ ‘Talking Heads’, or any solution to the soft
symbol grounding problem.

4.2.1. Beyond Harnad

The general approach to the soft symbol grounding problem is to implement non-symbolic
representations as the supposedly autonomous content of symbolic representations. In a
reply to Searle, Harnad emphasises that there are ways of non-symbolic processing that
could very well be fit for this purpose.

“A nonsymbolic code is one in which the relation between the symbol tokens and what
they stand for is not arbitrary or conventional, but governed by physics in some way, such
as through reliable causal connections between similar physical properties such as shape.”
(Harnad 1989, p. 14)

He supposes that icons are physically determined and, therefore, independent from a
designer. As a consequence, the Chinese room argument does not apply to computational
symbol grounding based in iconic representation (i.e. his hybrid design). (ibid.)
For one, the content an icon can have for one system is initially independent of the

content that the same icon can have for another system. Remember the reversible duck-
rabbit in figure 2.2 on page 17. Even to one and the same system, an icon can mean
different things. Among different systems, this variance can only increase—not even
considering the possibility that these systems might not share a similar sensorimotor
apparatus or bodily constitution.
An icon does not simply present a referent as is. Instead, icons must be interpreted

according to particular conventions just like symbols. Harnad’s iconic projections, for
example, follow a very specific mapping from the structure of the referent to the structure
of the icon. For Harnad to speak about the iconic projection of a zebra already introduces
his own ideas about what makes a structure be the icon of a zebra.
If the basic perception of an artificial system is determined by human means of

processing, then its concepts are essentially human as well. With an essentially non-
human constitution, however, this puts the system at a considerable practical disadvantage.
The Chinese room argument applies to all cases where the system’s most basic per-

ception is determined beforehand, be it by selecting a particular set of symbols or by
selecting particular means of processing according to van Gelder. This is why Searle
rejects Harnad’s hybrid approach to the symbol grounding problem.

The importance of external content in Harnad’s design is most clear in the dependency
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of its icons on ‘feedback indicating their names’. This feedback origninates outside the
system. Therefore, a cognitive system according to this design is fundamentally incapable
of truly autonomous concept creation.

4.2.2. Beyond Searle

Consider the following, where Searle provides a concise repetition of his point against
computational implementations of autonomous content in general. (Searle 1987, pp. 231–
232; Searle 1990b)

Axiom 1. Computer programmes are formal (syntax).

Axiom 2. Human minds have mental contents (semantics).

Axiom 3. Syntax itself is neither constitutive nor sufficient for semantics.

Concl. 1. Programmes are neither constitutive nor sufficient for minds.

This argument applies to all computer programmes, independent from whether they
implement iconic or symbolic representations. In light of this argument, imagine the
Chinese room one last time. Instead of a rule book or water pipes, now suppose there is
a Chinese speaking person handing Searle the appropriate symbolic responses.
A Chinese person that takes the right functional role in the Chinese room would

understand the input signs. The system now features a component that understands
Chinese and therefore the system also features mental content. In this setting, however,
it still appears intuitively inappropriate to say that the room understands anything. Why
is this?
David Chalmers provides an explanation.

Superficially, there is something quite compelling about the argument: “Com-
puters can only engage in formal symbol manipulation. These symbols are
meaningless. Therefore computers cannot understand.” But such an ar-
gument draws its force entirely from the conflation of representations with
computational tokens, under the term “symbol”. (Chalmers 1992, p. 20)

Chalmers argues that the thrust behind the Chinese room argument comes from a
conflation of mental representations and computational symbols. This, in turn, affords a
conflation of real systems and their formally syntactic descriptions. If you consider the
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room as a description, then the Chinese room argument merely shows that the symbolic
description of a cognitive system cannot feature mental content.

Searle himself makes a very similar point when he argues that “it is obvious that we
cannot explain how typewriters and hurricanes work by pointing to formal patterns they
share with their computational simulations. Why is it not obvious in the case of the
brain?” (Searle 1990a, p. 32)

His case in point appears obvious because simulations work in accordance with formal
patterns but are not identical to them. To explain typewriters and hurricanes, requires
to refer to the physical systems that behave according to these patterns.
In the same way, the behaviour of a running programme can be described, but not

explained, by pointing to the computational symbols that implement it as formal patterns.
Actual simulations merely work in accordance with formal symbolic patterns but are not
identical to them. To explain them, it is necessary to also consider them as physical
systems.

After all, it is obvious that we cannot explain how brains work by pointing to formal pat-
terns they share with their descriptions. Why is it not obvious in the case of computational
simulations?

4.3. A New Route

Harnad’s interpretation of symbol grounding as a soft problem has lead to a variety of
practical systems. However, it also lead to a neglect in the development of solutions to
the hard problem (mentioned also by Sun 2000, footnote 6).
The soft interpretation distracts from a problem that is important far beyond the

cognitive sciences: “[the significance of the symbol grounding problem] is not limited to
artificial intelligence, for to solve [it] is to give a satisfactory account of how meaning
emerges in the natural world, or, in other words, to naturalise semantics.” (Bielecka 2015,
p. 79, emphasis added)

Approaches to the soft symbol grounding problem concern the development of symbolic
conventions between cognitive systems but they do not even touch the naturalisation of
semantics. Systems that implement a solution to the soft interpretation always depend
on content that is external to the system itself—be it in the designer or in a ‘community’
of other systems.

The hard interpretation of the symbol grounding problem highlights this and it therefore
enables to ask how real cognitive systems can actually surpass this limitation. It suggests
that basic perception is not only the building block for mental content but that basic
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perception itself carries a particular type of content that must be acquired autonomously.
The Chinese room argument is a point against mental content in formal procedures but

not against content in the physical instances that they describe. After all, it is hard to
identify computational symbols in the electric activity of a computer during the execution
of a symbolic programme.

The relevant symbols in the case of a computational simulation of mental representation
are not computational symbols. Instead, symbolic mental representation can only be
simulated by arranging computational symbols such that processes that act according to
this arrangement yield states that are functionally similar to mental states.
From this, the following premise can be inferred that enables to avoid the transfer of

content onto the system: as long as an artificial system does not register a certain type
of its own structural elements, these elements can feature any kind of external content.
Without an immediate influence on the system, there cannot be any transfer.

As a consequence, the content that these elements have to an observer also has
no influence on the content that complex structures—which the system composes of
them—have to the system. The system’s interpretation of its internal structure cannot
start with the atomic elements of this structure but no sooner than with compositions of
these elements.

The content that these compositions have to the system does not depend on the system’s
designer because, the designer does not know the content of these structures and, to the
system, there simply is no content prior to these compositions.

This proceeding rejects a central premise behind the Chinese room argument: formal
symbol manipulation makes autonomous content impossible. This premise is replaced by
a fundamental uncertainty concerning the content of another system’s internal repres-
entations. Only this agnosticism enables the generation of autonomous content in any
system beside oneself the first place.
To reject the Chinese room argument does not imply that the circuitry of computers

buzzes with metal content. It merely shows that, just because there is no content in the
formal description of a system, does not mean that there is no content in the system itself.
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The previous part provides an overview about what the actual problem is, the different
ways its elements can be conceived of, and how these conceptions determine what will
be accepted as a solution. In the light of this discussion, the creation of basic mental
concepts is considered to be at the heart of the frame problem, the problem of vanishing
intersections, and the symbol grounding problem.

With a subjective conception of the mental representations that enable mental concepts
in the first place, the symbol grounding problem presents itself at the root of the frame
problem and the problem of vanishing intersections. It is argued that a consequential
subjective interpretation of mental representation requires to consider the problem at
hand as more than just a case for linguistics but fundamental to understanding in general
instead.

The symbol grounding problem shows an intrinsic deficiency in early conceptions of cog-
nition. Reason for the long-lasting popularity of the symbol grounding problem, however,
is an implicit confusion of subjective mental representations in real cognitive systems
and the objective representations that stand for mental representations in descriptions of
cognition like cognitive models.
Intentional psychology and representationalism are important theoretical foundations

for cognitive modelling. A conflation of both, however, lends various paradoxical situations
of which the symbol grounding problem is only one.
Without distinguishing a system from its model, parts of the description appear like

parts of the real system. This is the case with real mental representations and the
representations in a cognitive model which merely stand for real mental representations.

Searle’s extensive work on language might support a soft interpretation of the symbol
grounding problem. To some, his engagement with linguistics might even suggest an
objective conception of mental representation. This, however, is quite far from his original
intention.

Conflating mental representations with their descriptions impedes the semantic autonomy
of the system that contains them. A description cannot, and is not supposed to be, inde-
pendent from content in the mind of an observer. In fact, observations are phenomenal
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descriptions. The essentially purpose of a description is to employ and rearrange content
that is already available to an observer such that it describes something new.

Interpreting the symbol grounding problem as the quest for a particular description of
mental representation must necessarily violate methodologically solipsism. This interpret-
ation, however, is in fact incentivised by the Chinese room argument. As the description
of a cognitive system, the room can impossibly present any original mental content to an
observer, instead it necessarily grounds in the observer’s own mental representations.

Just like real cognitive systems, a comprehensive simulation of cognitive systems is not
supposed to describe anything. A simulation that implements a subjective conception of
mental representation is therefore able to preserve methodological solipsism.
The grounding of symbolic mental representations cannot only be based in structural

features. A cognitively justified representation of the environment must itself be part of a
greater context that describes the system’s current situation.
The rest of this work extends on this thesis. It is divided into a theoretical and a

practical part. Both describe content and context in the mental model of a cognitive
system.
The following chapters show how the field of embodied cognition explains the initial

emergence of basic perception, how the philosophy of mind describes the creation of
mental models from this basic perception, and how semiotics describes the interplay of
mental representations in a mental model.

First, the intentionality in subjective mental representations is presented. Theories on
intentionality accord to representationalism (see section 3.1.1): mental models are not
generated from a world of objects but from a reality of inconceivable things that are not
accessible to immediate perception.

Second, various practical approaches to modelling cognition from the field of embodied
cognition are explained. Most of these models renounce the need for mental representation
and, with it, the actual need for a mental model of reality.

Symbolic representation is vital for cognitive systems to avoid carrying over complexity
from concrete content to its phenomenal appearance in a more abstract context. The
conception of mental representation that is concerned by the critique in embodied cognition
is clarified in more detail.

Third, the theoretical part merges into the practical part with a formal description of
intentional content as the structure of mental models. This formal description allows to
design an algorithm that generates such a structure on its own.

In the remaining chapters, the computational procedures for a system to create its own
mental model of reality is provided. In the last part, the implementation of this algorithm
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enables to eventually test the three practical theses from section 1.3.2.
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Part II.

Models of Embodied Cognition
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6. Introduction to Embodied Cognition

Traditionally, mental representation is conceived of as a symbolic relation between shape
and referent. Research programmes that explicitly criticise symbolic conceptions of mental
representation include enactivism, embedded cognition, or extended cognition. Each of
these labels emphasises various different factors that might be relevant in overcoming the
problems from chapter 2.

At first sight, these approaches do not share much despite common critique. On closer
inspection, however, all agree on the central thesis of embodied cognition: To understand
cognitive systems requires to consider their physical bodies. In the following, a survey of
the most influential theories in embodied cognition is presented.
The methods of embodied cognition are diametrically opposed to classical-symbolic

explanations of mental representation. This is also why they are particularly successful in
areas where classical approaches fail. The most notable successes include, for example,
rapid and reactive interaction with the environment and learning structural features from
natural data.

The presentation of these approaches serves the purpose to show how the initial genera-
tion of mental content is conceived of in the natural sciences outside the subjective frame
of the philosophy of mind. Knowledge about theories from embodied cognition enables
to realise considerable overlaps with functional descriptions from the phenomenological
camp in the next part.

6.1. Embodied Cognition as an Explanation for Basic
Perception

The previous part presents arguments that support the assertion that mental representation
must be grounded in elements below basic perception. Although basic perception appears
atomic to first-person-perspective, for it to be grounded in reality, basic perception itself
requires an internal structure that is in a causal relation with external events. To avoid
the transfer of content, this structure must consist of mental elements that the system
itself is not aware of.
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In embodied cognition, connectionist methods like artificial neural networks are fre-
quently used to simulate processes which operate on pre-conceptual mental entities (e.g.
individual neurons). These entities stand in causal relations with external events but,
individually, they do not mean anything to their system. Accordingly, these methods are
also called ‘sub-symbolic’. As such, they provide a way to ground basic perception that
avoids the use of content from anywhere else.

In Harnad’s hybrid approach, however, these elements are already arranged according
to the designer’s own ideas on how an icon is supposed to resemble its referent. This
defeats the purpose behind the autonomous generation of basic perception because it
reintroduces a relation to external content (see section 4.1).
This external content is necessary for his system because it learns under supervision.

Each iconic arrangement of representational elements must conform to an externally
determined representational template/scheme that is determined by a ‘teacher’. The
information received by the system, therefore, undergoes a prior selection and adjustment
to serve as examples for what the system is supposed to learn in the first place.
This supervision is specific to Harnad’s design but not inherent to connectionist

methods in general. Embodied cognition contains various theories on the generation of
basic perception with connectionist methods that are unsupervised. These theories show
how to ground content in information that is exchanged between system and environment
without the system’s awareness.

This imperceivable information exchange can be simulated by computational symbols
without the danger of transferring content. This is simply because those computational
symbols simulate nothing that the system is supposed to be aware of.

Therefore, embodied cognition’s various explanations for the emergence of basic percep-
tion from pre-conceptual elements provide a solid foundation for simulating the generation
of symbolic mental representations—independent from the individual explanation’s stance
on symbolic mental representation.

6.2. Overview

In the remainder of this part, theories of embodied cognition are presented that do not
regard basic perception as ultimate bedrock of cognition. These theories are part natural,
part phenomenological, explanations for the pre-conceptual processes that generate basic
perceptual categories. Theories of embodied cognition enable to establish the connection
between an external physical environment and the mental ‘inner workings’ of a cognitive
system.
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Two main branches of embodied cognition deal with the shortcomings of purely symbolic
systems. The first one intends to get rid of symbolic representations for good. The second
one tries to reflect on the reasons why specifically symbolic representations have failed to
yield more generally intelligent behaviour so far and on how symbolic systems might need
to be extended. The following survey is divided accordingly.1 Some of the approaches
that explain symbolic representation ground in approaches that are originally intended to
replace it, others develop their own theoretical foundation.
The first chapter contains explicitly anti-representationalist models of cognition. The

rejection of mental representation is mostly due to the historical shortcomings of formal
symbolic approaches. All models in this chapter reject a very similar understanding of
mental representation. Particular emphasis is put on exposing this understanding

The second chapter contains models that try to consolidate concepts of mental repres-
entation with a non-symbolic foundation. These approaches do not justify the content of
mental representations in virtue of prior convention like Harnad and Steels (i.e. they do
not try to solve the soft symbol grounding problem from section 4.1) but they consider
representation in a formally weaker sense instead. Particular emphasis is put on the
extend to which this mitigates a symbolic conception of representation.

From the presentation, the importance of two major methodologies that are relevant for
the computational implementation of a cognitive model is inferred. One is connectionism
and the other is dynamic systems theory.
The framework of connectionism provides a formalism for structural representations

that literally ‘contain’ information. The framework of dynamic systems theory enables to
address the reactive causal coupling between system and environment.

1Of course, this is not the only way of breaking this heterogeneous field down into more comprehensible
bits. However, the borders of such a segmentation must be at least as blurry as the self-perception of
the approaches involved. For alternative taxonomies, see Wilson (2002), Gibbs (2006), Calvo and
Gomila (2008), Shapiro (2011), and Lyre (2013), among others.
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The conception of mental representations that is attacked by anti-representationalist
positions has its origins in propositional representations. This kind of representation
has been suggested, for example, by Zenon Pylyshyn and it is compositional, symbolic,
explicit, abstract, and amodal. (e.g. Pylyshyn 1977)

This conception was intended as a counter reaction to the idea of visual imagery that
was suggested by Stephen Kosslyn and James Pomerantz, among others. They argued for
iconic mental representations that literally resemble their referents. (e.g. Kosslyn and
Pomerantz 1977)
This antagonism continues to have effect on debates including, but not limited to,

whether mental representations are analogue or digital (e.g. Goodman 1976 vs. Lewis
1971), depictive or descriptive (e.g. Kosslyn and Pomerantz 1977 vs. Pylyshyn 1977),
spatial or propositional (e.g. Kosslyn 1980 vs. Pylyshyn 1979), and intentional or
phenomenal (e.g. Dretske 1997 vs. Block 1996).1

The anti-representationalist position holds that a formally strict concept of symbolic
representation is inadequate to describe mental states and therefore also inadequate to
simulate essential characteristics of cognition.

As a consequence, anti-representationalists need to deliver a model of cognition that is
less formal but still covers complex instances of subjective mental representation such as
imagination—which, in fact, manifests as a representation for parts of the world.

7.1. Development as Dynamic Interaction

Esther Thelen and Linda Smith present their stance on mental representation from a
developmental perspective. They reject the idea that object concepts are realised as
representations altogether.

Representations in their strongest, original, and most meaningful sense are
symbols that stand for what is represented and are distinct from the computa-

1This reference to the historical debate suggests that both positions might have developed their conception
of mental representation also to contradict popular conceptions of the other side.
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tional processes that operate on them. By this original definition, sensorimotor
processes are decidedly not representations. (Thelen, Schöner, et al. 2001,
p. 72)

According to Smith and Thelen, object concepts do not result from representational
structures but from ongoing sensorimotor processes instead. They argue that

[T]here is no such thing as an “object concept” in the sense of some causal
structure that generates a thought or a behavior [. . . ] There is only “knowledge”
of objects as embedded in the immediate circumstances and the history of
perceiving and acting in similar circumstances. (ibid., p. 34)

The mind as a whole, in their view, is this the dynamic interaction between system
and environment. These mutual influences occur in parallel, decentralised, and in real-
time. Such processes can be described particularly well as a dynamic system. (Smith and
Thelen 2003)

Thelen, Schöner, et al. distinguish between an external, third-person-perspective on
‘causal structures’ and an internal, first-person-perspective on embedded ‘knowledge’.
They specifically reject representations in the sense of physical structures that store
abstract object concepts.

7.1.1. The A-not-B Error

The A-not-B error can be interpreted to support this claim. It is a major object of study
for dynamicist approaches to cognition. (Thelen, Schöner, et al. 2001)

Children between the ages of eight and twelve months are prone to this error. It occurs
while they are actively looking for a desirable object. If the object was overtly hidden
at place A, the child will search the object at A accordingly. However, if the object was
hidden at A several times but is eventually hidden at B, the child will still search for the
object at A.
Why does the child assume the object at A when it clearly saw that it was hidden at

B? 2

2Jean Piaget interpreted this observation as the lack of a concept of object permanence. However, notice
that Piaget meant this to show that the infant has not yet learnt the permanence of objects in general,
not that they have not learnt the permanence of the particular object—the object as such, so to say.
(Piaget 2013, pp. 50–65)

Later experiments in Bower (1982), Baillargeon and DeVos (1991), and Ahmed and Ruffman (1998)
indicate that vanishing objects evoke irritation in infants as soon as with the age of three and a
half months. This suggests that object permanence may come gradually with growing sensorimotor
experience.

52



7. Anti-representationalist Models

According to Thelen, Schöner, et al. (2001), the concept of a each particular object
emerges from continuous sensorimotor interaction between cognitive system and environ-
ment. These interactions are at the same time cause and effect for consistent behaviour
in the child.

When the infant searches at A, it becomes more likely that, next time, it will search at
A again. This behaviour is reinforced by previous instances that have been rewarded by
finding the object.
Initially, this reinforcement is independent from intermediate observations. An adult

knows that observing the object being hidden at B refutes the assumption that the object
is at A. The child itself, however, does not yet realise the relation between hiding and
finding an object.
If the task is understood as a reinforced sensorimotor process, then it is no surprise

that the infant repeats what it experienced to be successful before. Without any counter-
examples, reward received by the child appears to depend only on the action ‘search at
A’, not on the previous observation that an indistinguishable object is hidden at B.

The child first needs to learn what observations are relevant for mentally persisting an
object during its absence. Situations like the A-not-B error are evidence for such learning.
Shapiro offers an illustrative analogy.

In effect, the A-not-B error is hardly more mysterious, hardly more in need
of an explanation in terms of rules and representations, than the fact that a
road map is more likely to be folded along its old crease lines than new ones,
or that a book is more likely to open on a favorite page than to a seldom-read
one. (Shapiro 2011, p. 61)

According to this analogy, the crease corresponds to a concept of the desirable object
and the act of folding corresponds to an action that yields this object. The example
illustrates the idea that concepts are essentially a cluster of motor habits. Without the
act of folding there is no crease and without a crease the map simply folds elsewhere.

7.1.2. Concerning the Symbol Grounding Problem

Thelen, Schöner, et al. argue that the purpose of any cognitive development is a skilful
combination of reactive and deliberate behaviour: “the critical developmental process may
not be transgressing some line dividing the conceptual and the perceptual-motor—the
traditional issue—but the ability to use memory and to make decisions off-line when the
situation demands.” (Thelen, Schöner, et al. 2001, p. 33)
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Only if we designate separate “symbolic and conceptual codes for the purely ‘mental’
part and dynamics for the perceptual-motor” (Thelen, Schöner, et al. 2001, p. 34) part,
“[w]e come up against both the symbol-grounding problem and its inverse: how do
symbols (concepts) arise from perception and how does the symbolic (conceptual) code
get transduced into the dynamics of movement?” (ibid., p. 34)
This analysis of the symbol grounding problem is supported by the fact that “skilled

people shift rapidly and effortlessly [. . . ] between acting immediately and tightly coupled
to the input, and delaying action in favor of remembering and planning.” (ibid., p. 34)
Such rapid shifts in different situations suggest that complex cognitive skills such as

language comprehension are not only dependent on abstract concepts. Instead, abstract
concepts and reactive intuition seem to be much more interwoven than is traditionally
assumed.
According to Thelen, Schöner, et al., the symbol grounding problem is not as big of

a problem as it is commonly understood. The mitigating factor is that concrete action
and abstract cognition might actually not be that different. People can act “so seamlessly
only because acting and thinking are in commensurate dynamics.” (ibid., p. 34)
Complex cognitive skills can just as well result from a reactive and dynamic coupling

with the environment. Object concepts might not require permanent grounding, because
they merely support reactive interaction. They only need to persist for a relatively short
while, considerably weakening the symbol grounding problem.

In summary, Thelen, Schöner, et al. specifically reject symbolic mental representation
in the sense of causal structures that correlate with object concepts. They state instead
that concepts emerge with the acquisition of motor processes that apply to the respective
object. In their view, a concept is knowledge on how to act upon an object.

As a consequence, the symbol grounding problem is asking too much. In an appropriate
model of cognition, symbolic representations do not need to be grounded in the first
place. The ability to acquire concepts as we observe it in other systems is in fact not the
grounding of symbolic mental representations but instead the development of a set of
motor skills that apply to a particular object.

7.2. Affordances and the Ambient Optic Array

At the physical border between cognitive system and environment both exchange raw
sensorimotor information. To make an informed decision, cognitive systems need to filter
huge amounts of this data.

First, sensorimotor samples have to be recognised and assigned to internal representa-
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tions. Secondly, reasoning processes operate on these representations to evaluate relevance,
desirability, and probability of possible outcomes in relation to the system’s individual
goals and abilities.
In a computational simulation, these processes become sedate and non-reactive when

confronted with too much data. It is hard to determine just the right amount of detail
for basic cognitive information processing.

On the one hand, if sensorimotor events are picked up that are not really important in
the current situation then the processing effort is too much. This results in the frame
problem. On the other hand, even the most extensive processing cannot make sense of
the world if relevant information is missing. This results in the problem of vanishing
intersections (see chapter 2).

In the brains of human cognitive systems, the thalamus is responsible for information
filtering (e.g. Kobayashi and Isa 2002). What are the functional processes that this part
of the brain implements? What is an appropriate heuristic for picking up just ‘the right
stuff’ in the current situation?

7.2.1. Perceptual Invariants

James Gibson calls the relevant properties of sensorimotor data ‘perceptual invariants’.
Invariants are those segments from a stream of imperceivable information that remain
relatively stable over time. The current ‘situation’, according to this understanding, is a
set of invariant sensorimotor activations that the system itself is not aware of.
Gibson describes invariants with his concept of the ambient optic array. “The central

concept of ecological optics is the ambient optic array at a point of observation. To be an
array means to have an arrangement, and to be ambient at a point means to surround a
position in the environment that could be occupied by an observer.” (Gibson 1986, p. 65)
The structure of the ambient optic array is composed of individual sensorimotor

information. Their shapes form the retinal projection of an external referent. When
changing one’s spatial position, for example, one necessarily also changes the arrangement
and structure of the ambient optic array. Over time, some of its shapes change and some
persist. Those that persist are invariant.

Figure 7.1 illustrates the difference in the ambient optic array between two perspectives
on a window. Invariants are those visual features of the environment that are independent
from perspective. In the figure, this is, for example, the visible part of the tree which
remains relatively constant between both perspectives.
The information in invariants is context-dependent and temporally extended. This

provides an important advantage over raw sensorimotor activation. The sampling rate of
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Figure 7.1.: Invariants in the Ambient Optic Array (Gibson 1986, p. 72, figure 5.4).

invariants is considerably lower than the sampling rate of raw sensorimotor information.
This is due to the fact that invariants extend over time. Raw sensorimotor information, in
contrast, is a steady and relentless torrent of incoming and outgoing data. The temporal
segmentation of this torrent into invariants enables processing to keep pace.

To perform this segmentation, only changes in immediate values need to be considered.
There is no need for abstraction, planning, or domain-specific knowledge. Each of the
resulting slices can serve as a basic perception that stands for a relevant aspect of the
current situation.

Combinatorial complexity that is lost due to the reduced number of elements over time
is compensated for by an increased total number of elements. Consider a case where,
after each time step, there is exactly one of n singular activations. Over a sequence of t
time steps, the number of possible combinations would be nt.
If the same time interval is covered by invariants that last on average 0 < p < t time

steps, then there are np different elements that occur t
p times on average. The resulting

number of possible combinations is (np)
t
p , which is exactly nt. Instead of after every

single time step, however, new information arrives only every p-th time step on average.

7.2.2. Affordances as Basic Perception

Especially important are invariants that persist during changes that are initiated by the
system’s own actions. In figure 7.1, for example, the visual impression of an outside tree
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is such an invariant.
These invariants are inherently related to an action. The particular set of invariants

perceived in the presence of a tree, for example, can afford the act of climbing—during
which the current visual impression remains invariably tree-like.

Accordingly, Gibson calls these invariants ‘affordances’. Affordances appear to their
system as basic perception. (originally in Gibson 1986; also in Millikan 2004, chapter 4;
Millikan 2006)

Given these points, affordances seem to be considerably well suited as a foundation for
mental representation. They occur in moderate frequency and do not require sophisticated
processing, thus alleviating stress on cognitive processes. The heuristic that enables to
identify relevant information is therefore invariance during action.

This heuristic integrate sensor data and motor processes. Gibson’s affordances describe
sensor aspects of the environment but at the same time they also describe motor aspects
of the system. As a consequence, therefore, they exploit the system’s embodiment while,
in general, they remain agnostic on bodily particularities.

According to Gibson, affordances are not cognitive but part of the external environment
(i.e. laws about the relation between sensor and motor activations). However, affordances
can be memorised. Once they are learnt, they can be retrieved and used to predict sensor
activations or select motor activations in a similar situation.

Gibson’s approach is anti-representationalist only with respect to the abstract, amodal,
and logically descriptive representations that are rejected by Thelen, Schöner, et al. as
well.

However, like Thelen, Schöner, et al., Gibson also considers cognitive correlates for
the dynamic interaction between system and environment even if he does not call them
‘representations’.

7.3. The Cognitive Subsumption Architecture

The motivation of Rodney Brooks’s model is frustration with the abilities of physical
robots. According to him, the reason for this lies in their architecture, where symbolic
representation separates perception and action. According to these architectures, percep-
tion and action are supposed to take place in mutually exclusive regions of a cognitive
system and are in most parts independent from one another.
Sensor activations are used to generate abstract representations of the environment.

With these abstract representations, planning is performed and, once it is finished, the
resulting motor activations are executed. Because of this serial process, Brooks calls the
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underlying frameworks ‘sense-model-plan-act architectures’. (Brooks 1991)
Sense-model-plan-act architectures try to describe the environment with a symbolic

world model on which computational processes can operate. Once these processes are
finished, they produce a motor activation which is expected to realise the change intended
by the system.

In sense-model-plan-act architectures, intelligent behaviour is simulated by implement-
ing functional layers that operate on symbols of different degrees of abstraction. Sensor
devices pre-process activations, the results are used to generate a model of the environment,
the system uses this model to plan its action, it performs this actions, and eventually the
actions result in the activation of motor devices. Figure 7.2a illustrates this process.
Robots controlled by a sense-model-plan-act architecture do not interact with their

environment directly but with a mediate model of it instead. This model is assumed to be
correct and precise. It consists of representations that are stationary and, once generated,
largely independent from the actual state of the environment.
Cognition in sense-model-plan-act architectures cannot be dynamic because it acts

upon a model, not directly upon the external environment. Robots that realise these
architectures are ‘displaced’, instead of being embodied and situated in the environment.
According to Brooks, this explains some of their limited abilities.

Brooks’ subsumption architecture “grew out of dissatisfactions with traditional robotics
and AI, which seemed unable to deliver real-time performance in a dynamic world” (ibid.,
p. 1227). How can this be remedied?

7.3.1. Nouvelle Artificial Intelligence

Brooks emphasises that sense-model-plan-act architectures are not the only venue to
intelligent behaviour.

The traditional methodology bases its decomposition of intelligence into func-
tional information processing modules whose combinations provide overall
system behavior. The new methodology bases its decomposition of intelli-
gence into individual behavior generating modules, whose coexistence and co-
operation let more complex behaviors emerge. (Brooks 1990, p. 3)

Central to the new method of ‘nouvelle artificial intelligence’ (also pursued, for example,
in Rosenschein and Kaelbling 1986 or Agre and Chapman 1987) is situatedness and
embodiment. Brooks (1991, p. 1227) defines both concepts as follows.
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(a) The sense-model-plan-act architecture
(Brooks 1999, p. 4, figure 1).

(b) The subsumption architecture (Brooks
1999, p. 5, figure 2).

Figure 7.2.: Architectures of Conventional and Nouvelle Artificial Intelligence.

• Situatedness: The robots are situated in the world—they do not deal with abstract
descriptions, but with the ‘here’ and ‘now’ of the environment that directly influences
the behavior of the system.

• Embodiment: The robots have bodies and experience the world directly—their
actions are part of a dynamic with the world, and the actions have immediate
feedback on the robots’ own sensations.

None of this applies to robots that are controlled by a sense-model-plan-act architecture.
They sent their sensor measurements to a central instance which tries to reconstruct a
complete set of mental representations.

Cognitive processes according to nouvelle artificial intelligence, in contrast, are parallel,
independent, and specialised instead of sequential, hierarchical, and generic. Figure 7.2
compares sense-model-plan-act architectures and nouvelle artificial intelligence.

Learning according to nouvelle artificial intelligence works quite differently from learning
according to conventional artificial intelligence. “In nouvelle AI each module itself generates
behavior, and improvement in the competence of the system proceeds by adding new
modules to the system.” (Brooks 1990, pp. 3–4)

Classic artificial intelligence systems improve by learning new symbolic representations
that can be processed by generic rules of inference. In nouvelle artificial intelligence,
systems become more proficient by learning specialised sensomotoric skills that solve
particular problems.3

3As a consequence, Dreyfus appreciates Brooks’s critique on classic artificial intelligence but also criticises
a lack of sophisticated abilities in subsumption architectures. “Brooks’s robots respond only to fixed
isolable features of the environment, not to context or changing significance.” (Dreyfus 2007, p. 335)
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7.3.2. Grounding Mental Representations

To Brooks, grounding is not motivated by philosophical, but by practical, disadvantages of
conventional approaches. He argues that the symbol grounding problem can be overcome
with the physical grounding hypothesis. The physical grounding hypothesis “states that
to build a system that is intelligent it is necessary to have its representations grounded in
the physical world.” (Brooks 1990, p. 6)

According to him, mental representations cannot be said to be grounded if they are not
under permanent sensorimotor influence. Conventionally, however, once representations
are generated, they are mostly independent from what they describe. This dissociation
between the internal model of an autonomous system and its external environment gives
rise to severe practical problems in a complex real-world situation that requires reactive
performance.

According to Brooks, the performance of a robotic agent benefits greatly from a tight
sensorimotor coupling with its environment. Sense-model-plan-act architectures do not
consider such a coupling.
Without symbolic representation, elaborate and time-consuming inference processes

do not even seem to be necessary. “Our experience with this approach is that once this
commitment [for nouvelle AI] is made, the need for traditional symbolic representations
soon fades entirely.” (ibid., p. 6)

Brooks does not suggest that mental representation is irrelevant or redundant in general:
“[A] careful reading shows that I mean intelligence without conventional representation,
rather than without any representation at all” (Brooks 1999, p. 79). Instead he proposes
to merely start research with reactive interaction and work one’s way up to more abstract
cognitive processes from there.
Even Brooks, famous for his supposedly anti-representationalist stance, is merely

reacting to the extreme claims and aspirations of classic artificial intelligence. He demands
that representations should be grounded in direct sensorimotor interaction between agent
and environment instead of floating among abstract ideas.
On closer inspection, even positions that are often regarded as exemplary anti-repres-

entationalist turn out only to be directed against a very specific and formal notion of
representation.

The question remains how to realise Brooks’ suggested step from dynamic sensorimotor
interaction to a more abstract representation of the environment. To answer this question,
requires to take into account what makes both appear so incompatible to begin with.
The shape of a symbol either does represent a particular referent or it does not. If

this relation is digital and binary, then there is not much room for a dynamic interaction
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between both. At first glance, symbolic representation appears like the exact antithesis
to a dynamic coupling between system and environment.
To determine whether a shape is the symbolic representation of a particular referent

requires that this shape is already associated with a particular content that enables to
validate this referent as ‘appropriate’. Central to the symbol grounding problem, however,
is the generation of exactly this initial content. It cannot be solved with representations
that are already supposed to represent something because this implies that they already
have this initial content.
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However, a comprehensive cognitive model describes not only reactive interaction but
more abstract cognitive processes as well. In contrast to the previous models, it must
be a hybrid that integrates the pre-conceptual processes from the previous chapter with
processes of abstract reasoning that operate on symbolic representations. In contrast to
Harnad’s hybrid model and Steels ‘Taking Heads’, however, it cannot be supervised by
another system.
Thelen, Schöner, et al. argue that basic and abstract cognitive processes are not so

different after all. Following such a holistic approach, the generation of abstract concepts
can be considered to be performed by the same general procedure that generated basic
perception. The structures that are generated by this procedure effectively serve as
content for all of the system’s representations of the environment.
Brooks already proposed his subsumption architecture as the basis of more abstract

cognitive processes. A hybrid model implements his requirements for real-time perform-
ance in a dynamic world and Gibson’s proposal to describe basic perception based in
imperceivable basic sensorimotor interaction. This enables to solve the philosophical as
well as the practical implications of the symbol grounding problem.

In this chapter, a select subset of hybrid models of cognition is presented, each of
which describes how mental representation emerges from basic sensorimotor interaction.
Particular importance is attached to the methods used by these models.

This enables to understand Harnad’s proposed architecture from section 2.3.3 in context.
The models in this chapter are state-of-the-art ideas on how basic concepts emerge in
cognitive systems from pre-conceptual entities. Any new alternative must be measured
against their explanatory power.

8.1. Conceptual Metaphors

According to George Lakoff and Mark Johnson, the categories of basic perception result
from a differentiation bottleneck in biological information processing.

To take a concrete example, each human eye has 100 million light-sensing
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cells, but only about 1 million fibers leading to the brain. Each incoming
image must therefore be reduced in complexity by a factor of 100. That is,
information in each fiber constitutes a “categorization” of the information
from about 100 cells. (Lakoff and Johnson 1999, p. 18)

The assignment of information from cells to optical fibres is a case of categorisation. In
the example, this categorisation is not determined by semantics but biologically necessary
due to the reducing degree of freedom at the causal connection from cells to fibres.
This categorisation is considered as the foundation of subjective experience. “[Cat-

egories] are the structures that differentiate aspects of our experience into discernible
kinds. Categorization is thus not a purely intellectual matter, occurring after the fact of
experience. Rather, the formation and use of categories is the stuff of experience” (ibid.,
p. 19). Basic perception is therefore a natural consequence from such a reduction in
complexity.
Lakoff and Johnson believe a bottleneck like this is not only responsible for basic

perception but also the reason for abstract categories. “Neural categorization of this sort
exists throughout the brain, up through the highest levels of categories that we can be
aware of.” (ibid., p. 18)
As a consequence, the generation of categories in not under the system’s immediate

control. “We do not, and cannot, have full conscious control over how we categorize. Even
when we think we are deliberately forming new categories, our unconscious categories enter
into our choice of possible conscious categories” (ibid., p. 18). Even abstract categories
are “an inescapable consequence of our biological makeup.” (ibid., p. 18)

Traditionally, content is understood compositionally, as a function of the content that it
consists of (see, for example, Szabó 2017). However, it is not clear how to determine this
function. How exactly is constituent content composed to express more complex content?
According to Lakoff and Johnson, this function is metaphorical. The structure in

basic content provides a scaffold for complex content. In this sense, the content of basic
perception ‘repeats itself’ up until the highest layers of cognition. It provides helpful
analogies in virtue of which more complex content can be understood. (Lakoff and
Johnson 1980)

To say that ‘love is a game’, for example, allows to draw an analogy between the
prototypical features of games and those of human relationships. The meaning of ‘games’
provides a scaffold for understanding the more complex meaning of interpersonal relations.
Metaphors provide a generalisation bias towards content that is somewhat analogical to
what is already known.

Consider the following examples for an analogy between ‘love’ and ‘game’. ‘You can
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win or loose’ means you can become very happy or very sad. ‘You have to follow the
rules’ means to implicitly agree on loyalty and devotedness. ‘You play against each other’
if it turns out to be hard to compromise.
But how do you arrive at the meaning of ‘game’ in the first place? Metaphors cannot

be the only source for concepts or we run into the symbol grounding problem all over
again. Lakoff and Johnson are aware of that. “Are there any concepts at all that are
understood directly, without metaphor? If not, how can we understand anything at all?”
(Lakoff and Johnson 1980, p. 56)

To avoid the grounding problem in their model of cognition, there must be some kind
of first content. According to Lakoff and Johnson, basic perceptual categories result from
information processing bottlenecks in our bodily constitution. Their content is therefore
not determined externally but by the body of the system. This provides a biological way
out of the symbol grounding problem.
According to this theory, the bodily structure of a cognitive system is present even in

its most abstract mental representations. “Most important, it is not just that our bodies
and brains determine that we will categorize; they also determine what kinds of categories
we will have and what their structure will be.” (Lakoff and Johnson 1999, p. 18)

8.2. Meshing Affordances as Perceptual Symbols

Cognitive processes are often compared to linguistic processes. Language as the expression
of thought promises to provide insights on its mental correlates. Lakoff and Johnson, for
example, see abstract meaning as grounded in metaphors. The fact that people speak in
metaphors like ‘argument is war’ reflects how their mind works: metaphorical.
Arthur Glenberg also consults language to solidify his claims about mental processes.

His indexical hypothesis, however, does not use language as a model to derive from it a
theory of the mind. Instead, he illustrates that even the abstract concepts in language
are grounded in sensorimotor interaction. He does not start from linguistic entities like
metaphors but tries to ground them in unconscious neural states.

To achieve this, Glenberg incorporates the theory of perceptual symbols from Lawrence
Barsalou. The following gives an account on the structure and workings of perceptual
symbols in the spirit of Barsalou before describing their application in Glenberg’s indexical
hypothesis.
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8.2.1. Amodal Symbols

Basic perception is always in a particular mode. It is, for example, auditory, visual, or
haptic. Abstract concepts, however, are not—they are amodal. Barsalou criticises models
of cognition that employ amodal mental representation.

His alternative conception of “a perceptual symbol is a record of the neural activation
that arises during perception” (Barsalou 1999, p. 583). The nature of perceptual sym-
bols is primarily physical: “unconscious neural representations—not conscious mental
images—constitute the core content of perceptual symbols.” (ibid., p. 583)

A perceptual symbol also be the potential correlate of a mental state. “Although neural
representations define perceptual symbols, they may produce conscious counterparts on
some occasions.” (ibid., p. 583)
Barsalou claims the essential problem of amodal symbols in cognitive sciences is that

“their internal structures bear no correspondence to the perceptual states that produced
them” (ibid., p. 578). He describes, that because

the symbols in these symbol systems are amodal, they are linked arbitrarily
to the perceptual states that produce them. Similarly to how words typically
have arbitrary relations to entities in the world, amodal symbols have arbitrary
relations to perceptual states. (ibid., p. 578)

Barsalou criticises the concept of amodal symbols for the arbitrary relation between
their ‘internal structure’ and ‘the perceptual states that produce them’.

He goes into detail on what he regards to be the conventional element of representation
in cognitive sciences with the example of colour representation.

The amodal symbols that represent the colors of objects in their absence reside
in a different neural system from the representations of these colors during
perception itself. In addition, these two systems use different representational
schemes and operate according to different principles. (ibid., p. 578)

So, according to Barsalou, usually two representational schemes (i.e. mappings between
representation and referent) are considered for two different types of mental representation.
One for abstract reasoning during the absence of the external referent and one that
resembles the referent somehow while the system interacts with it.

Employing both schemes at once implies a gap by design. This gap separates represent-
ation in absence, from representation in presence, of the referent. It is no surprise that
the transition from one to another turns out to be problematic.
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A perceptual symbol, in contrast, maintains parts of the structure of its referent. The
transition from basic perception to perceptual symbols should therefore be much more
natural that from basic perception to amodal representations.

8.2.2. Perceptual Symbol Grounding

Amodal symbols are in an arbitrary relation with their perceptual states. In a physically
determined system, however, there are no truly arbitrary relations. This is known as ‘the
transduction problem’.

Perceptual symbols are generated by cognitive processes that monitor neural activation
during experience. It is irrelevant whether the neural activation correlates with a basic
perception or with an abstract concept: perceptual symbols simply record particular
aspects of whatever neural state is present at the moment.
This state is recorded schematically, in virtue of its invariant aspects. Therefore,

perceptual symbols maintain the perceptual mode of the neural state from which they
result. They reside in the same system and are encoded in the same format as the neural
state itself. (Barsalou 1999, p. 582)
Perceptual symbols need no external referent that caused them and they can remain

indeterminate concerning the particular aspect that they refer to (similar to the disjunctive
categories of MacDorman in section 2.2). These aspects can be context-dependent,
dynamic, and compositional.
Barsalou suggests that there is simply no need for both representational schemes (i.e.

modal and amodal). In his view, this assumption is substantiated by the fact that there
is no convincing answer to the question how amodal symbols develop from perceptual
states in the first place. “If we cannot explain how these symbols arise in the cognitive
system, why should we be confident that they exist?” (ibid., p. 580)

In Barsalou’s view, the symbol grounding problem is inverse to the transduction problem.
Where the transduction problem is concerned with how amodal symbols are generated
from modal perception in a physical system, the symbol grounding problem is concerned
with how amodal representations are able to physically refer to the modal perceptions
which they are about.1

This applies to basic perception as well as abstract concepts. Despite the fact that the
mode of perception is central to his theory, Barsalou emphasises that he

1Notice that, throughout this work, the transduction problem is interpreted as implication and special
case of the symbol grounding problem rather than its inverse: symbols signify particular referents
if and only if those referents had a major role in their generation in the first place. In the special
case of symbolic mental representations, they are properly grounded if and only if they have been
‘transduced’ from experience before.
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proposes a theory of knowledge, not a theory of perception. Although the
theory relies heavily on perception, it remains largely agnostic about the
nature of perceptual mechanisms. Instead, the critical claim is that whatever
mechanisms happen to underlie perception, an important subset will underlie
knowledge as well. (Barsalou 1999, p. 582)

He argues for the perceptual (i.e. modal) origins of abstract concepts, not for the
origins of basic perception. This shows, however, how Barsalou’s perceptual symbols
make use of theories ‘from the ground’ like Gibson’s affordances or Brooks’s subsumption
architecture can be used as a foundation to explain the generation of abstract concepts.

8.2.3. Meaning in Meshes

According to Glenberg, words and phrases obtain their meaning from perceptual symbols.
During the learning of a language, linguistic expressions are indexed such that, in the future,
the referenced perceptual symbols can be retrieved when the expression is encountered.
(Glenberg and Kaschak 2002)

The content of perceptual symbols is a recording of neural states. As a consequence,
they also contain the neural correlate to the affordances that the system perceived during
these states. The perceptual symbol of an upright vacuum cleaner, for example, allows
to infer its use as a coat rack from the neural correlate of the actions that the object
afforded during perception. (ibid.)
This record of affordances enables to combine the affordances that are described by

different perceptual symbols. A coat affording to be hung and a vacuum cleaner affording
to hang something on can be meshed. This meshing composes perceptual symbols into
‘simulators’ that allow to repeat parts of the original experience.

Simulators can be primed by language. The command ‘hang the coat onto the upright
vacuum cleaner’, for example, elicits a mental meshing of the compatible affordances in
the perceptual symbols of ‘coat’ and ‘vacuumm cleaner’. The command ‘hang the coat
onto the upright cup’, in contrast, does not elicit a meshing. (ibid., p. 559)
The indexical hypothesis suggests that the mental simulation of interaction is crucial

to language understanding. It “proposes that language is made meaningful by cognitively
simulating the actions implied by sentences.” (ibid., p. 559)

Glenberg and Kaschak test this hypothesis in an experimental setting, where subjects
are supposed to evaluate the sense of articulated affordances while executing actions
contrary to these affordances. If meaning is based in the simulation of affordances, the
subjects’ performance should be worse when forced to execute contradicting actions. The
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results support the indexical hypothesis. (Glenberg and Kaschak 2002)
Their prospect is that the indexical hypothesis may provide a general theory of human

understanding that grounds, not only linguistic, but all abstract mental representation in
the neural correlate to basic perception. “Although substantial work needs to be done to
secure that possibility, that work may well be rewarded by an account of language and
meaning firmly anchored in human experience.” (ibid., p. 564)

8.3. Sensorimotor Integration

Kevin O’Regan and Alva Noë give their own account on the unconscious processes prior
to basic perception. They point out that any natural explanation for basic perception
requires a leap of faith. This is due to the disjunctive epistemological domains occupied
by basic perception from third-person perspective (i.e. physical observations) and basic
perception from first-person perspective (i.e. subjective experience).
It can always be asked: why is exactly this physical realisation necessary for basic

perception but not another? As detailed as any natural explanation may be, there cannot
be a determinate answer to how subjective experience is physically caused.
The quality of experiencing a particular sensorimotor mode (e. g. visual or auditory)

cannot be reduced to physical terms (e.g. their neural coding). Even if certain neuronal
activation patterns always occur simultaneously with visual experience, the observer’s
objective perspective is inevitably and essentially different from the subjective perspective
of the observed system.

Any explanation from the perspective of a third person for phenomena from the perspect-
ive of the first person must end in the stipulation of axiomic correlations. Therefore, it is
fundamentally impossible to falsify a hypothetical causal connection between observation
and experience by experiment.

One symptom of this is the binding problem. O’Regan and Noë describe it as follows.
“The fact that [neural] modules operate independently and are often localized in different
cerebral regions, raises the question of how the separate streams of information ultimately
come together to give us the unified perception of reality that we subjectively experience.”
(O’Regan and Noë 2001, p. 967)

Localised neural modules are widely considered as the natural correlates for basic
perception. They seem to present external events to the mind as subjectively unified
instances. Objectively, however, they are spatio-temporally distributed across the brain.
There does not seem to be any structural isomorphism between a subjective experience and
its physical correlate. In a nutshell, the binding problem describes the non-preservation
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of spatio-temporal unity from first- to third-person-perspective and vice versa.
This implies that the different modes of basic perception may be physically indistin-

guishable. Different neural activations may even correlate with subjectively identical
perceptions of the same modality. “Even if the size, the shape, the firing patterns, or the
places where the neurons are localized in the cortex differ, this does not in itself confer
them with any particular visual, olfactory, motor or other perceptual quality.” (O’Regan
and Noë 2001, p. 941)

8.3.1. Sensorimotor Contingencies

The different modes of perception cannot be explained neurologically. O’Regan and Noë
propose to explain the different modes of perception phenomenologically instead.

Instead of assuming that vision consists in the creation of an internal rep-
resentation of the outside world whose activation somehow generates visual
experience, we propose to treat vision as an exploratory activity. [. . . ] The
central idea of our new approach is that vision is a mode of exploration of the
world that is mediated by knowledge of what we call sensorimotor contingencies.
(ibid., p. 940)

They propose to consider the modes of perception as different types of unconscious
interaction between agent and environment. They argue that “what does differentiate
vision from, say, audition or touch, is the structure of the rules governing the sensory
changes produced by various motor actions, that is, what we call the sensorimotor
contingencies governing visual exploration.” (ibid., p. 941)

Eye movements, for example, distort visual experience in a unique manner. If the gaze
moves along a horizontal line, the retinal image is preserved. If the gaze moves from
above to below this line then the retinal image changes drastically and in a particular
relation to speed and direction of the eye movement.
Sensorimotor dependencies in the auditory domain are quite different. They follow

rules that are determined by other bodily, environmental, and physical characteristics
than vision (as described, for example, by psychoacoustics).

In O’Regan and Noë’s view, vision is identical to the active exploitation of learnt vision-
specific sensorimotor contingencies by executing the certain motor activations. Sensor
and motor activations are equally necessary for perception. (ibid., p. 943)

To have knowledge about sensorimotor contingencies does not imply knowledge about
this knowledge. The expected retinal changes during eye movement which can be inferred
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from learnt sensorimotor contingencies, for example, are unconscious. The fundamental
‘knowledge’ in these contingencies is a necessary condition for experience, which is why it
cannot be experienced itself. (O’Regan and Noë 2001, pp. 944–945)

Sensorimotor contingencies are quite similar to Gibson’s affordances: “Gibson’s notion
of ‘affordances’ is undoubtedly strongly related to our present approach” (ibid., p. 945).
Contingencies that separate the individual modes of perception, however, do not consist
of temporal invariants but of permanent rules that apply to the different senses in general.
This difference reflects in the difference between transitive and general consciousness.

While being transitively conscious, “your feeling of the presence of all the detail consists
precisely in your [implicit] knowledge that you can access all this information by movements
and inquiries” (ibid., p. 960). Transitive consciousness is skilful engagement with current
circumstances in virtue of implicit expectations. It operates on unconscious sensorimotor
states and, from them, it generates basic perception.

General consciousness, in contrast, is skilful engagement with circumstances in virtue of
explicit expectations. “Visual consciousness in general, on the other hand, is a higher-order
capacity. To be visually conscious in general is to be poised to become aware of a present
feature (that is, to become transitively conscious of it)” (ibid., p. 960, second emphasis
added). Transitive consciousness is a necessary premise for general consciousness.

8.3.2. Sensorimotor Contingencies as a Foundation for Phenomenology

O’Regan and Noë reject the traditional idea of basic perception in virtue of mental
representation. They argue that visual perception, for example, “does not arise because
an internal representation of the world is activated in some brain area. On the contrary,
visual experience is a mode of activity involving practical knowledge about currently
possible behaviors and associated sensory consequences.” (ibid., p. 946)
For a particular experience to appear, a particular contingency needs to be active or

‘more present’ than another: “when a particular attribute is currently being seen, then
the particular sensorimotor contingencies associated with it are no longer latent, but are
actualized, or being currently made use of.” (ibid., p. 945)
O’Regan and Noë describe this use in more detail.

Indeed, there is no “re”-presentation of the world inside the brain: the only
pictorial or 3D version required is the real outside version. What is required,
however, are methods for probing the outside world—and visual perception
constitutes one mode via which it can be probed. (ibid., p. 946)

Under this assumption, what is commonly regarded as randomly accessible knowledge
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in the mind of a cognitive system turns out to be part of the external environment instead.
There are no mental representations of external referents, just effective means of probing
the environment under different circumstances.

According to O’Regan and Noë, mental content is better understood as a description of
useful sensorimotor dependencies that enable prediction and expectation. They argue that
“the outside world acts as an external memory that can be probed at will by the sensory
apparatus” (O’Regan and Noë 2001, p. 946). To maintain a meaningful concept of mental
representations, therefore, sensorimotor contingencies should be rather considered as
holding the information necessary to ‘access’, instead of to ‘reproduce’, the environment.
From a conception of basic perception as act of exploration follows that “to reflect

on the character of one’s experience is to reflect on the character of one’s law-governed
exploration of the environment” (ibid., p. 961). The sensorimotor account of vision and
visual consciousness of O’Regan and Noë grounds basic perception explanations in such
unconscious exploratory processes.

The neural structures that enable such sense-specific prediction are the closest thing to
a physical correlate of perceptual experience. The hippocampus is currently the most
probable brain region to fulfil this purpose (see, for example, Stachenfeld et al. 2017).
But to O’Regan and Noë, the relevance of the physical ground of basic perception is
secondary to its phenomenological ground.
In contrast to purely natural approaches, a phenomenological analysis is compatible

with the study of conscious mental processes. “Our central aim above is to make clear that
we do not believe that there is any incompatibility between the sensorimotor contingency
theory and more full-blooded phenomenological project.” (O’Regan and Noë 2001, p. 973)

Even more so, sensorimotor contingencies provide a rigorous foundation for phenomen-
ological investigations of unconscious parts of the mind. “In this way, we believe that the
kind of approach we lay out in this paper helps place phenomenology as an undertaking
on solid ground.” (ibid., p. 962)

8.4. The Encryption of Mental Content

It cannot be the case that every known fact about the world needs to be considered in
each context. How can the mental representations be generated such that they contain
only information that is relevant to the system?
According to all of the previous models for cognitive systems, the content of mental

representations is eventually determined by the system’s sensorimotor capacities. This
raises the question what a mental representation would contain to a system with different
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capacities.
To simply transfer content from one system onto another would be similar to ‘copying’

neurological activation patterns. Haugeland described this as problematic.

[E]ach individual’s particular body—his or her own muscular gestalts—functions
like a large encryption key; and the pulse patterns coming down from the brain
are the cryptograms, which are either meaningless, or they mean something
only in conjunction with that particular body. (Haugeland 1993, p. 226)

Content that grounds in the sensorimotor interaction between environment and system
is always ‘bodily encrypted,’ just like the neurological activation patterns Haugeland
described.
The information that a door can be opened by kicking it in is useless for a robot on

wheels. For anyone but their own system, it is as if mental representations were encrypted
in observable but incomprehensible structures that deny external access to their content.
As a consequence, the content in these structures might be observed, but it cannot be
understood, by agents with another body.

Bodily particularities of the cognitive system are indispensable in the generation of a
mental model. Parts of the environment mean different things to different interpreters.
With growing experience, mental models are adapted by, and adopted to, the body of
their particular system in its particular environment.
Bodies enable to evaluate the relevance of a referent in virtue of its contribution to

maintaining or destroying them. This provides a solution to the frame problem. The
mind alone cannot determine existential relevance. To do that requires a body.
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If content is not an explicit structural component of the mental representations in a
cognitive model, then it must necessarily reside within an observer. To avoid filling this
‘semantic vacuum’ with external content, structural mental content must be part of the
cognitive model.
To solve the symbol grounding problem requires this content to be independent from

an observer and, therefore, to be created autonomously by the observed system. The
chapters in this part show how embodied cognition explains a generation of content that
satisfies this condition.
The supposedly anti-representationalist stance of embodied cognition turns out to

object only a rather formal conception of mental representation. In fact, the emphases
on dynamic interaction and structure in content even suggest practical methods that
enable the grounding of mental representations. This is not compatible with a categorical
rejection of symbolic mental representation in general.
The suggested methods are dynamic systems theory and connectionism. Dynamic

systems theory, on one hand, as a means to describe the reactive interaction between
a system and its environment. Connectionism, on the other hand, to explain the gen-
eration of structures that describe a referent and which serve as content for symbolic
representations. A combination of both enables to describe how the content of a mental
representation can be created and adapted in a dynamic interaction with its system’s
environment.

Both methods are frequently employed in hybrid computational models of cognition. In
contrast to Harnad’s initial proposal of a hybrid model, however, more recent approaches
do not require immediate external supervision to generate content. Instead, they ground
in lawful dependencies between the motor capabilities of the system and the according
sensor reaction from the environment.

Common to these models is an emphasis on the procedural character of basic perception.
Where, until recently, the perceptual states of cognitive systems were rather thought of
as grounded in momentary ‘snapshots’ of sensor activation, now there appears to be a lot
of consent among representatives of embodied cognition that basic perception is in fact
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not singular and atomic, but temporally extended and composed in ways much similar to
abstract concepts.

This draws attention to the cognitive processes that compose subjective phenomena into
abstract concepts. This is researched by phenomenology and, more general, the philosophy
of mind. O’Regan and Noë’s approach in particular shows that mental representation
can be phenomenologically grounded in the unconscious mind.

In the following part we examine the phenomenological aspect of mental representations
in more detail. This enables the development of a model for the generation of mental
representations grounded in unconscious processes that are analogous to, but different
from, what is usually conceived of as cognitive processes.
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Intentional Mental Models
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10. Introduction to Intentional Mental
Models

The models in the previous part describe cognitive systems as a whole. The part ends with
an argument for the inclusion of the structural mental contents of cognitive systems in a
cognitive model of the same systems. The sum of all of its mental contents is the cognitive
system’s mental model. The part before that presents two different conceptions of this
content and argues in general for a subjective interpretation of mental representation.
This part now elaborates on the particular structures and processes that are involved in
the processing of a subjective mental model.

Mental models facilitate conscious processes of cognitive systems like thinking, planning,
or elaborating (May 1996, pp. 406–407). A mental model is internal to its system. A
comprehensive model of cognitive systems, therefore, must be a model of mental models
as well (Strube 1996b, p. 407).
Jay Forrester emphasises the importance of mental models for understanding reality.

‘[The cognitive system] has only selected concepts and relationships which he uses to
represent the real system [...] The question is not to use or ignore models. The question
is only a choice among alternative models’ (Forrester 1971, p. 112). Cognitive systems
have to deal with the potential gaps and flaws of their mental model because it is their
only way to conceive of the world.

Forrester explains that a ‘mental model is fuzzy. It is incomplete. It is imprecisely
stated. Furthermore, within one individual, a mental model changes with time and even
during the flow of a single conversation’ (ibid., p. 112). Under these conditions, the
correctness of mental models appears to be subordinate to their practicality.

The dynamicity of mental models becomes apparent with the shifts they undergo during
the course of a conversation. ‘The human mind assembles a few relationships to fit the
context of a discussion. As the subject shifts so does the model’ (ibid., p. 112). If the
received information is flawed, then so can be the mental models of the receiving cognitive
system.
Cognitive systems can agree upon the expressions of their mental model but they
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cannot access the underlying mental model of another system directly. ‘When only a
single topic is being discussed, each participant in a conversation employs a different
mental model to interpret the subject. Fundamental assumptions differ but are never
brought into the open.’ (Forrester 1971, p. 112)

Accordingly, an individual cognitive system might very well be the only system to have
a particular mental model. Even with an arbitrarily extended period of adaptation, it
cannot be guaranteed that two interpreters ever arrive at the same mental model—let
alone that one of these models is more ‘correct’ than the other.

10.1. The World as Mental Model

According to Forrester, ‘[e]ach of us uses models constantly. Every person [...] instinctively
uses models for decision making. The mental image of the world around you which you
carry in your head is a model.’ (ibid., p. 112, emphasis added)

Its mental model enables a system to deal with external reality—to understand, for
example, the possible consequences of its actions. To a cognitive system, the world
appears in virtue of its own mental model of external reality.

Philip Johnson-Laird illustrates the connection between mental models and the world
in a similar way. He states that “[t]he limits of our models are the limits of our world.”
(Johnson-Laird 1991, p. 471)

Naively put, however, models are obviously only part of the world and the world is
obviously not a model itself. So what are the conditions under which mental models and
the world coincide like Forrester and Johnson-Laird suggest?

The difference between a mental model and the world lies in the conception of mental
representation. Mental models consist of mental representations. The applied conception
of mental representation therefore has severe influence on one’s conception of mental
models. To see the implications, consider the following.
On the one hand, there is the observer’s perspective on the mental representations

of a cognitive system. On the other hand, there is the system’s perspective on its
own mental representations. These perspectives coincide with subjective and objective
representations as we present them in chapter 3. From the system’s ‘own’ point of view,
mental representations are the objects that the world is composed of.

This particular characteristic of subjective mental representation is often referred to as
‘intentionality’. The concept experienced a surge in interest since Searle’s formulation
of the Chinese room argument and its impact on artificial intelligence and the cognitive
sciences.
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Unfortunately, there is a diversity of opinions on the epistemic and ontological status
of intentional states, on their constituents, their defining characteristics, their types,
and respective consequences. In the following, a short overview is provided over its
development and contemporary conceptions.

10.2. Intentionality in Mental Representation

Fodor (1983) and Searle (1983) differentiate the ‘original’ or ‘intrinsic’ intentionality of
some mental states from the ‘derived’ intentionality of linguistic statements. Dennett
(1989) and Cole (2010), in contrast, argue for intentional monism.

On the one hand, Cole suggests that intentionality is never derived while Dennett, on
the other hand, defends the position that all intentionality is derived.
Over the years, Searle produced one of the most extensive and consistent bodies of

work on this subject. Accordingly, Harnad adopts some of Searle’s ideas on intentionality
in his computational approach to the symbol grounding problem.

However, Searle rejects the idea that digital computers may process original intention-
ality in principle. He states that ‘[s]uch intentionality as computers appear to have is
solely in the minds of those who program them and those who use them, those who send
in the input and those who interpret the output.’ (Searle 1980b, p. 422)

Searle’s work allows to infer why he sees computational systems as intrinsically incapable
of intentionality and what would be necessary to change this. The purpose of this part
is to provide a overview over his reasoning which eventually culminated in the Chinese
room argument.
As Margaret Boden notes in reference to Smith (1986), however, ‘there is no general

agreement on what intentionality is, and there are deep unclarities about representation
as well.’ (Boden 1988, p. 248)

Most authors agree that ‘intentionality’ is what makes something be ‘about’ something
else. At this point, however, the consensus ends.1

Searle assumes that moods and emotions are mental states without intentionality. To
Crane, these states are intentional because they describe the world in a particular way
(e.g. beautiful or depressing). In all mental states, ‘there is the experiencing subject,
the world experienced (or the thing in the world experienced) and the particular way of
apprehending the world.’ (Crane 1998, p. 245)

1Recently, even this property of intentionality has been attacked by Tegtmeier (2005) and Drummond
(2012).
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This chapter proceeds to explain the roots of a modern day understanding of intention-
ality, starting from Franz Brentano’s ideas about the intentional inexistence of objects.
Next, the modal logic concept of intensionality is described to avoid the common con-
flation with intentionality. Lastly, Searle’s conception of intentionality is presented in
detail.

10.3. Inexistent Objects

Intentionality has been a philosophical topic for centuries. Brentano re-introduced it as an
object of psychological investigation. His intention was to understand how the subjective
experience of cognitive systems can present external reality in the form of objects that do
not exist in external reality themselves.

Mental phenomena involve all kinds of subjective experience. This includes, for example,
emotions, moods, beliefs, memories, intentions, or perceptions. According to Brentano,
all these phenomena have an intentional object.
‘Every mental phenomenon includes something as object within itself, although they

do not do so in the same way [. . . ] We can, therefore, define mental phenomena by saying
that they are those phenomena which contain an object intentionally within themselves.’
(Brentano 2012, pp. 88–89)

Following from this, every mental phenomenon contains its own object. Intending,
for example, is always to intend something, believing is always to believe in something,
and hoping is always to hope for something. The intentional object is what is intended,
believed in, or hoped for.
To call the content of a mental phenomenon ‘object’, however, can lead to confusion

concerning its ontological status. Brentano anticipated this confusion. Therefore, he
emphasised that intentional objects do not exist in the same way we deem physical objects
to exist outside of our minds. They are, rather, immanent to the act of thinking itself.

Every mental phenomenon is characterized by what the Scholastics of the
Middle Ages called the intentional (or mental) inexistence of an object, and
what we might call, though not wholly unambiguously, reference to a content,
direction toward an object (which is not to be understood here as meaning a
thing), or immanent objectivity. (translated2 ibid., p. 88, emphasis added)

2„Jedes psychische Phänomen ist durch das charakterisiert, was die Scholastiker des Mittelalters die
intentionale (auch wohl mentale) Inexistenz eines Gegenstandes genannt haben, und was wir, obwohl
mit nicht ganz unzweideutigen Ausdrücken, die Beziehung auf einen Inhalt, die Richtung auf ein
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It is not Brentano’s intention to make clear that intentional objects do not mean
anything but rather that they do not refer to something in an external reality. This has
been put forward in detail by Crane (2006) and becomes clear if the English translation
is compared to its German original.

10.4. External Reality

This understanding of ‘inexistent object’ raises the immediate question why anyone would
want to talk about objects that do not really exist. The answer is quite straightforward:
to express the belief that objects in general do not exist independent from, or outside of,
the mind. Crane makes clear

that Brentano’s view is not that there is a distinction between “physical
objects” which exist, and “intentional objects” which do not exist. His view
is rather that none of the objects which are studied by science “really and
truly exist”: they are phenomena, mere appearances, which are signs of an
underlying reality but which are not real themselves. (ibid., p. 23)

The objects we perceive are a product of how our minds process information about
external reality. They are not a part of objective reality themselves but depend as much
on the perceiving subject as they do on the information that it receives and processes
without awareness.

We can say that there exists something which, under certain conditions,
causes this or that sensation. We can probably also prove that there must be
relations among these realities similar to those which are manifested by spatial
phenomena of shapes and sizes. But this is as far as we can go. (Brentano
2012, p. 19)

Despite his intention to emancipate psychology from the natural sciences, Brentano very
well believed in an objective reality beyond subjective experience. This reality, however,
is not composed of the objects of perception.
‘The phenomena of light, sound, heat, spatial location and locomotion which [the

natural scientist] studies are not things which really and truly exist. They are signs of
something real, which, through its causal activity, produces presentations of them.’ (ibid.,
p. 19)

Objekt (worunter hier nicht eine Realität zu verstehen ist), oder die immanente Gegenständlichkeit
nennen würden.“ (Brentano 1874, pp. 124-125, emphasis added)
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By defining the objects of perception to be primarily psychological, Brentano determines
that phenomenological processes are prior to everything that the natural sciences can
describe.3

10.5. Emancipating the Mental

In his original formulation, Brentano meant intentionality to be a necessary and sufficient
indicator for a mind. Brentano made this clear in his famous intentionality thesis. “This
intentional inexistence is characteristic exclusively of mental phenomena. No physical
phenomenon exhibits anything like it.” (Brentano 2012, p. 89)

These are two premises in a syllogism to prove that mental phenomena are not physical
phenomena. The first premise states that intentionality is a sufficient (i.e. ‘characteristic’)
and necessary (i.e. ‘exclusive’) mark for mental phenomena. The second premise states
that there is no physical phenomenon that features intentionality. Therefore, there is no
physical phenomenon that is also a mental phenomenon.4

Both premises draw a clear demarcation line between the first-person-perspective from
which mental phenomena are experienced and the third-person-perspective from which
this can be observed (e.g. as a physical phenomenon). The difference between both is
unmistakeably indicated by the presence or absence of intentionality.
Natural science is limited to observations from outside the observed system. A phe-

nomenological approach, on the other hand, gives first-person-perspective the ultimate
authority over statements about the mind. This emancipates psychology from the natural
sciences.

In Brentano’s view, the central function of the mind is to map immediately imperceivable
external things onto consciously accessible phenomena. Broadly speaking, intentionality
is what makes mental representations present these things as the objects of perception.
The question on how this might be realised spawned several different approaches.

Embodied cognition suggests that the particular body is somehow functionally responsible.
According to Searle, on the other hand, this is due to the specific biochemical composition
of our brains. The next chapters on his understanding of intentionality show that such

3Presumably under the pressure of some of his students, the late Brentano considered it necessary to
revise his view in the second edition of Psychologie vom empirischen Standpunkte. In his last years,
he regarded the objects of thought as real (i.e. physical) things and described intentionality much
according to the Anglo-Saxon tradition. Unfortunately, this broke consistency with his earlier work
and is mostly considered to be motivated socially and not scientifically.

4Most analyses have segmented Brentano’s argument along the necessity/sufficiency of intentionality as
a mark of the mental (e.g. by Crane 1998; Nes 2008; Schlicht 2008). Relevant in our case, however, is
his intention to separate the mental from the physical domain.
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different theses are not fundamentally incompatible.
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In the late 19th and early 20th century, intentionality was picked up by two quite different
philosophical branches. According to the topics traditionally discussed by these disciplines,
different aspects of intentionality have been emphasised.

The continental tradition is close to Brentano’s original interest in subjective experience.
It explicitly concerns the relation between subjective mental phenomena and their capacity
to be about something.
The Anglo-Saxon tradition, on the other hand, is more interested in the linguistic

implications of intentionality. From its representatives, intentionality is often presented
as what makes linguistic statements be about something else.
In contemporary philosophy, the difference between both conceptions of intention-

ality is usually reflected terminologically. Brentano’s interpretation is referred to as
‘intent ionality’.

Unfortunately, however, its linguistic counterpart is not very distinguishably referred to
as ‘intensionality’. The term is inherited from Frege’s conception of sense as intensional
meaning.

In the following, the difference between intent ionality and intensionality is illustrated
with particular emphasis on the implications on a computational simulation of intentional
mental representations. Hopefully, this allows to avoid any pitfalls like mixing up objective
and subjective conceptions of mental representation due to a misinterpretation of examples
or thought experiments like it was the case with the Chinese room argument.

11.1. A Linguistic Conception of Intentionality

The fact that representations can be about things that do not really exist (e.g. unicorns)
has baffled analytic philosophy for a long time. Willard van Orman Quine described the
problem as follows. “Nonbeing must in some sense be, otherwise what is it that there is
not? This tangled doctrine might be nicknamed Plato’s beard [. . . ]” (van Orman Quine
1980, p. 2).

To avoid complicating the question how one thing can be about another thing by the
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need to also consider the existence of the other thing, van Orman Quine proposed a
‘semantic ascent’. His intention was to contain the question for representation by only
considering its expression.

The strategy of semantic ascent is that it carries the discussion into a domain
where both parties are better agreed on the objects (viz., words) and on
the main terms connecting them. Words, or their inscriptions, unlike points,
miles, classes and the rest, are tangible objects of the size so popular in the
marketplace, where men of unlike conceptual schemes communicate at their
best. (van Orman Quine 1960, p. 272)

This enables to consider intentionality from a restricted linguistic point of view. Ac-
cording to this understanding, intentional mental states can be analysed in virtue of their
linguistic expressions like ‘I believe Santa Clause lives at the north pole’ or ‘I know Barack
Obama is the president of the USA’ instead of my actual belief or knowledge.

Intentionality that can be expressed, however, is quite different from Brentano’s original
conception. Expressions lack the property that is most important to phenomenology: a
feeling.

Feelings are exclusive to first-person-perspective, expressions are not. Although feelings
might retain some of their properties when being expressed, intentionality in Brentano’s
sense is lost.
A conception of intentionality that can be expressed implies a radical change from

phenomenology to linguistics. This is explicitly intended by van Orman Quine. The
result is, however, that ‘Quine’s attributions [to intentionality] bear little relation to what
Brentano really said.’ (Crane 2006, p. 33)
Searle (1979), Crane (1995, pp. 32–36), and Rapaport (2012) also emphasise the

differences between both conceptions. According to them, it is crucial to keep both
separate and they give very similar accounts on how to do this.
Searle’s original motivation is indeed linguistic. He applies his speech act theory to

the phenomenological domain but he describes intentionality as an irreducibly private
aspect of subjective experience.1 His premise is that intentionality is necessary for, and
therefore prior to, any sincere speech act. (Searle 1983)

1Effectively, Searle disagreed with both: the continental tradition, represented by Jaques Derrida, and
the Anglo-Saxon tradition, represented by van Orman Quine. The argument with Derrida took place
quite aggressively (for an overview, see Fish 1982; Wright 1982; Kenaan 2002; Raffel 2011).
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11.2. Intensional Statements as Intentional States

According to Frege, what is commonly referred to as ‘meaning’ consists of two parts: an
extension (i.e. the reference) and an intension (i.e. the sense). He differentiated both to
resolve ‘Plato’s Beard’: someone can have a certain meaning ‘in their head’ without a
real world correlate. (Frege 1892)

In Frege’s terminology, the planet Venus is, at the same time, the extension of ‘morning
star’ and ‘evening star’. The intensions of these names, in contrast, consist of the
conditions under which its references can be established.
The intension of ‘morning star’ is therefore that it is the last star to be seen in the

morning. The intension of ‘evening star’ is that it is the first star to be seen in the evening.
Two similarities suggest a close relation between intentional mental states and intensional

statements.
The first one is that intentional states and intensional statements can both be ‘about’

something that does not really exist. For example, I can believe that unicorns hunt in
packs and I can express this belief as well. Without an actual pack of unicorns, the
statement cannot be compared against the real world. Such a comparison, however, is
necessary to determine a truth value.

The second similarity is that both can be ‘about’ the same thing in different ways. At
the same time I can know Barack Obama but not know any former president of the USA.
If I know Barack Obama but I do not know that he was president, then I can believe

that Barack Obama is in the room and belief that no former president is in the room at
the same time.

These two different intentional states can be expressed with two according intensional
statements as well. Both intensional states can be the case at once. Both statements,
however, cannot be the case at once.
The truth values of ‘Barak Obama is in this room’ and ‘a former president is in this

room’ must be identical exactly because Barack Obama is a former president. Equal terms
(e.g. ‘Barack Obama’ and ‘a former president’) must be substitutable under preservation
of the truth value of the whole statement.
Crane (1995) presents two similar cases to show that there is no necessary relation

between intentional mental states and intensional statements. Searle (1979) and Rapaport
(2012) even conclude that there is no relation at all.

In fact, on an intricate connection between the intensionality of statements and the
intentionality of mental states, Searle writes that ‘[n]othing could be further from the truth’
(Searle 1979, p. 85) and that it is ‘[o]ne of the most pervasive confusions in contemporary
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philosophy.’ (Searle 1979, p. 85)
This is directly supported by Brentano.

The truth of physical phenomena is, as they say, only a relative truth. The
phenomena of inner perception are a different matter. They are true in
themselves. As they appear to be, so they are in reality, a fast which is
attested to by the evidence with which they are perceived. (Brentano 2012,
p. 19)

In contrast to any linguistic conception of intensionality, Brentano was not bothered by
the truth of intentional mental states because his conception of intentionality provides the
necessary ground for calling anything ‘true’ in the first place.
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Searle describes intentionality as “by definition that feature of certain mental states by
which they are directed at or about objects and states of affairs in the world.” (Searle
1980b, p. 424)

He argues that “[i]nstantiating a computer program is never by itself a sufficient
condition of intentionality” (ibid., p. 417). He concludes that no computer program can
ever exhibit mental states to the same extent as a real cognitive system (e.g. a human).

In the following, this argument is analysed with regard for his conception of intentionality.
To Searle, intentionality is essentially biological. Therefore, it is crucial to understand
what is supposed to be so peculiar about intentionality as a natural entity that computer
programmes should not be able to realise it.

Searle does not argue against artificial intentionality in general. The logical properties
that realise intentionality might be realised by various other materials. “It doesn’t matter
how an Intentional state is realized, as long as the realization is a realization of its
Intentionality.” (Searle 1979, p. 81)
We know, for example, that biochemicals are among the ‘proper’ materials because

we experience intentionality with our own biochemical brains. In Searle’s view, digital
computers are not among these materials because they can only realise syntactic processes
and syntax does not feature the relevant logical properties. Computers may simulate
these properties but to Searle, a simulation of intentionality is not intentionality at all.

Whatever else intentionality is, it is a biological phenomenon, and it is as
likely to be as causally dependent on the specific biochemistry of its origins
as lactation, photosynthesis, or any other biological phenomena. No one
would suppose that we could produce milk and sugar by running a computer
simulation of the formal sequences in lactation and photosynthesis (Searle
1980b, p. 424)

This is a first overview of Searle’s take on the conditions of intentionality. His argument,
why symbol processing cannot cause intentionality, goes into much more detail.
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12.1. Intentionality and Computational Symbols

According to Searle, digital computer can process representations only in virtue of their
shapes. To understand, in Searle’s view, is to have a mental state that contains the
meaning of its referents. He criticises strong artificial intelligence for ignoring the fact
that everything computer programmes can ever do, is manipulate shapes whereas only
minds manipulate content.

According to Searle, computer programmes always perform formal symbol manipulation
and “all that ‘formal’ means here is that I can identify the symbols entirely by their
shapes” (Searle 1980b, p. 418). Formal processes attach only to the shapes of symbols,
not to their content.

Mental states, in contrast, can have intentional content. This content enables them to
be about something else. Without content, shapes can only present themselves.

Searle describes his view on the relation between formal processes and intentional states
in more detail:

the program is purely formal, but the intentional states are not in that way
formal. They are defined in terms of their content, not their form. The belief
that it is raining, for example, is not defined as a certain formal shape, but
as a certain mental content with conditions of satisfaction, a direction of fit
[. . . ], and the like. (ibid., p. 423)

Intentionality is an intrinsic feature of mental states. Unlike linguistic content which is
determined by a community, the content of intentional states is internal to an individual.
Like mental states, statements are about something. Their intentionality, however,

is only derived from the original intentionality in the mind of their speaker. Without
original intentionality in mental states, linguistic expressions cannot be about anything.

12.2. Intentional States and Speech Acts

Searle develops his idea of intentionality as a basis for his speech act theory. According to
him, speech acts enable access to mental states because the intentionality in expressions
is derived from the original intentionality in mental states—not because intentionality in
itself is somehow linguistic. (Searle 1983)

Speech acts according to Searle consist of two components: propositional content and
illocutionary force. The former describes some referent and the latter specifies the type
of relation that is established with this referent. Force and content are not just distinct
from one another, they are members of two essentially different categories.
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Content alone cannot exert influence and, hence, is not an act in and by itself. It can
merely describe something but a pure description is not instructing anything because it is
descriptive, not normative. Only a particular stance towards this description can initiate
change. This stance is a force.
For example the propositional content of the expression ‘pick up that block’ is that

block being picked up and the illocutionary force is most probably a command. The
propositional content of ‘I will give you your money back’ is that the money be returned
and the illocutionary force is a promise.

The propositional content of an expression does not need to be a physical object. It can
also describe processes, abstract entities, or situations. Also, various types of illocutionary
forces are possible, as for example accusation, prediction, or explanation.

A speech act succeeds if propositional content and state of the world are in accordance; it
fails if they are not. The propositional content, therefore, defines conditions of satisfaction
for the success of the speech act by describing some state of the world. The illocutionary
force is the speaker’s disposition towards this state.

In the example ‘pick up that block’, the conditions of satisfaction are met if the world
conforms to the propositional content. This state is established by someone acting
according to the command. If the block is being picked up by someone, the speech act
was successful. The speech act ‘I will give you your money back’ is satisfied as soon as I
give you the money. (Searle 1969; Searle 1979)

Commands and promises have a world-to-word direction of fit because they can cause a
change in the world according to words. Explanations, on the other hand, have a word-to-
world direction of fit because their words are determined by aspects of the world. Excuses
are an example for a null case without a particular direction.

12.3. Intentional Content and Psychological Mode

According to Searle (1983), a speech act can shed light on intentionality if it is the sincere
expression of a mental state. The prediction ‘tomorrow it will rain’ can only provide
information on the mental state of the speaker if they truly believe that it will rain
tomorrow.

For accordance between speech act and mental state, Searle infers that both must
be composed similarly. The propositional content in a speech act is analogue to the
intentional content in a mental state and the illocutionary force in a speech act is analogue
to the psychological mode in a mental state.
Like propositional content provides the conditions of satisfaction for a speech act,
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intentional content provides the conditions of satisfaction for a mental state. In virtue of
these conditions, mental states can be ‘about’ or ‘directed towards’ certain states of the
world.1

The direction of fit in mental states is either mind-to-world, world-to-mind, or the
null case. Beliefs are in a mind-to-world direction of fit, desires are in a world-to-mind
direction of fit, and feeling sorry is an example for a null case.
Propositional content is derived from intentional content because speech acts are an

externalisation of the mental states we perceive ourselves to be in. However, language is
just one of the systems onto which we project our introspection.
“The mind imposes Intentionality on entities that are not intrinsically Intentional by

intentionally transferring the conditions of satisfaction of the expressed psychological
state to the external physical entity.” (Searle 1979, p. 89)
We conceive of other systems as if they had original intentionality. It might seem, for

example, as if the car does not want to start or that the room understands Chinese.
The conditions of satisfaction for those impressions, however, are not determined by

the concerned system itself but part of our own mind. The apparent intentionality in
expressions is always derived from one’s own original intentionality. This applies to
language in the same way that it applies to computational, or any other, system.

12.4. Mental States Appear as Aspectual Shapes

To Brentano, the defining property of mental states is their intentional content. Searle, in
contrast, concedes that states without an intentional object can be mental as well.

He argues that the defining property for mental states is not intentionality but potential
consciousness. This enables to describe ‘undirected forms of anxiety and depression’ as
mental states although they do not seem to contain anything. The potential for a mental
state to become conscious is provided by its aspectual shape. (Searle 1980b)

Aspectual shape is most obvious in the case of conscious perceptions: think
of seeing a car, for example. When you see a car, it is not simply a matter of
an object being registered by your perceptual apparatus; rather, you actually
have a conscious experience of the object from a certain point of view and

1Notice, as Élisabeth Pacherie puts it quite nicely, that “the expression ‘conditions of satisfaction’ makes
reference to the requirements that have to be met, and not to the things that meet those requirements.”
(Pacherie 2000, p. 405)

Searle’s intentional content is therefore better understood as a set of sufficient conditions (i.e. as
Fregean sense), rather than the reference to a particular thing that satisfies these conditions (i.e. as
Fregean reference).
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with certain features. You see the car as having a certain shape, as having
a certain color, etc. And what is true of conscious perceptions is true of
intentional states generally. (Searle 1992, p. 157)

Aspectual shapes determine how mental states appear to their system. All mental
states have an aspectual shape because Searle does not consider states that do not appear
to their system as mental.
Aspects are always from a perspective and, therefore, subject to various relations

between the system and its environment. An outside observer cannot perceive the same
aspects as the observed system—or simply put: aspects are subjective.
“The aspectual feature cannot be exhaustively or completely characterized solely in

terms of third-person, behavioral, or even neurophysiological, predicates. None of these is
sufficient to give an exhaustive account of the way it seems to the agent.” (Searle 1991,
p. 53)
Intentional content determines the object of a mental state and aspectual shapes

determine its appearance. Searle’s conception applies to all, and only to, mental states
that describe an inexistent object.2

12.5. The Intentional Network

The previous section concerns the relation between shape and content. Different mental
contents, however, are also related to one another to describe connections between the
external referents that they present to their cognitive system.

Searle presents the following example. Oedipus wants to marry Queen Jocaste, of whom
he does not know that she is his mother. Oedipus’ mental state of wanting to marry
Jocaste thus describes a world in which he is married to his mother.

Unfortunately, this intentional content is presented to him in virtue of an aspectual
shape. The content of which is only accessible from Oedipus’ own perspective. Because he
does not know that she is his mother, the content also cannot not include the information
that she is. (Searle 1983, pp. 101–107)
But surely, Oedipus does not want to marry his mother. Where is the according

intentional content for this? It does not make sense to assume that this is also contained
in his wish to marry the queen—something along the lines of ‘. . . and that the queen is
not my mother’. If it was, the intentional content would also need to contain that she is

2In contrast to Brentano, Searle assumes that moods or emotions do not have an object and are therefore
not intentional but only phenomenal.
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currently alive, that she is not already married, that the queen is not made of stone, and
so on.
Oedipus does not need to think explicitly about all these constraints, but naturally,

they seem to play a role in the conditions of satisfaction for his wish. If all the conditions
would need to be explicit, in the end, the possibly relevant information for any condition
would need to contain everything he assumes to be the case and everything he assumes
not to be the case.

Consider, for example, that Oedipus’ mental state (i.e. wishing that he is married
to the queen) implicitly requires the form of government to be a monarchy. It seems
awkward to consider the state of government as part of Oedipus’ wish. If intentional
content would need to be exhaustive, Oedipus would face a problem much similar to the
frame problem we present in section 2.1.
To solve this problem, Searle introduces a network of intentional content. Oedipus’

intentional content that describes him being married to Jocaste is interconnected with
all the other content that is relevant for the goal state—much like the approaches to the
frame problem in section 2.1.1.

Satisfying the conditions for one of his mental states depends not only on the content
of this state but also on the content of various other states that have been experienced
by him to be in some way relevant for it. Past mental states can be represented by their
aspectual shapes in the content of the present state.

Therefore, Oedipus sees in the wish to marry the queen only his aspects of the world from
his perspective on the world. His mental state implicitly depends on his understanding of
marriage, queens in general, and the specific queen he wants to be married to.

These relations form a network of intentional content. If there were no further component
in Searle’s description of the mind, it would lead right back to the symbol grounding
problem. If intentional content consists only of aspectual shapes that reference other
intentional content, how can it be grounded in something that is not content already?

12.6. Grounded in the Background

Without a word on the foundation of intentional content, however, Searle’s theory on
intentionality faces the symbol grounding problem all over again. Without an explanation
that describes the pre-conceptual origins of intentional content, every cognitive model
that covers the mental model of the described system runs danger to implant its designers
own conceptions into to the system that it is supposed to described.

Searle’s intentional content is grounded in what he calls ‘a background of physical
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skills’. This skills are know-how about, for example, how to open a door, how to drink
from a bottle, how to walk, how to swim, and so on.

Intentional states only have the conditions of satisfaction they do, and thus
are the states that they are, against a Background of abilities that are not
themselves Intentional states. In order that I can now have the Intentional
states that I do I must have certain kinds of know-how (Searle 1983, p. 143).

The skills in the background are deep or local.
The deep background contains skills that are

common to all normal human beings in virtue of their biological makeup—capacities
such as walking, eating, grasping, perceiving, recognizing, and the preinten-
tional stance that takes account of the solidity of things, and the independent
existence of objects and other people (ibid., pp. 143–144).

Deep skills might be predisposed, for example, in virtue of neural anatomy.
The local background, in contrast, contains cultural skills, such as opening doors or

drinking from bottles. Local skills are all acquired. Searle describes that the internalisation
of local skills is not like moving explicit rules for, say, a foreign language into the
unconscious domain of our minds. Instead, explicit rules are like training wheels that
enable to practice something we were not able to practice before.

Once it is possible to carry something out on our own in virtue of mindless exercise of
rules, we are able to acquire expertise. “The rules do not become ‘wired in’ as unconscious
Intentional contents, but the repeated experiences create physical capacities, presumably
realized as neural pathways, that make the rules simply irrelevant.” (ibid., p. 150)
Searle presents an example for when this background shows.

Suppose as I go into my office, I suddenly discover a huge chasm on the other
side of the door. My efforts to enter my office would certainly be frustrated
and that is a failure to achieve the conditions of satisfaction on a Intentional
state. But the reason for the failure has to do with a breakdown in my
Background presuppositions. (ibid., p. 155)

To Searle, all mental states are embedded into a background of implicit and exercised
habits, which are determined by the relations of an agent with its environment. This
unconscious background serves as the ground for all intentional content.
A failure in this background is experienced as breakdown: implicit assumptions turn

out not to be the case and this contradiction manifests, for example, as chasm in front of
Searle’s door or as the fact that Jocaste is indeed Oedipus’ mother.

93



13. A Semiotic Framework for Subjective
Mental Representation

In the previous chapters, mental models are described informally as being composed
of mental representations with intentional content. In this chapter, a description of
subjective mental representations is developed on the basis of Charles Peirce’ semiotics.
The empirical foundation for his theory is obtained similar to Searle’s and the phe-

nomenological variants of embodied cognition: by enquiring one’s own mind. Peirce called
his method ‘phaneroscopy’.
“Phaneroscopy is the description of the phaneron; and by the phaneron I mean the

collective total of all that is in any way or in any sense present to the mind, quite regardless
of whether it corresponds to any real thing or not.” (CP 1.284)
The semantic characteristics of three general types of mental phenomena and their

general role in the mind are formalised as relations. These three types are feelings, facts,
and thoughts. Thought is the only symbolic mental representation and based on the other
types.
Just like Searle, Peirce also describes the content of a symbolic representation as

structural. Unfortunately, Searle’s explanation for intentional content requires a biological
correlate.

In Peircean semiotics, intentional content is not primarily natural but first and foremost
phenomenal. Mental representation grounds in basic perception and basic perception
is essentially inaccessible to natural sciences. Semiotics does not require a natural
justification for subjective experience but merely accepts it as given.

13.1. Peirce and Symbol Grounding

According to Peirce, all thought is in signs (CP 5.253). This conveys the impression as if
Peirce thought of mental phenomena as a subset of signs. But to him, signs are mental
phenomena—only some of which are symbolic.

Peirce is frequently referred to in explanations for the symbol grounding problem (more
recently, e.g. Sun 2000; Vogt 2001; Cangelosi et al. 2002; Vogt 2002; Gomes et al. 2005;
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Clowes 2007; Vogt and Divina 2007; Steels 2008). So far, however, his theory of signs has
not been connected to the intentionality of mental representations.

He was not familiar with Brentano’s conception of intentionality as it is shared today,
for example, by Searle. “Peirce never referred to Brentano and never used ‘intentional’ or
its cognates in Brentano’s sense” (Short 2007, p. 6). The analyses from Short (1981) and
Short (2007, especially pp. 6–11) indicate, however, that both conceptions of the mind
are phenomenological at the core and essentially compatible.
Peirce remains materially agnostic, like Searle with his theory on intentionality. To

both, cognition can be described only in virtue of its function.1

An essential aspect of this function is the representation of reality. From a semiotic
perspective, representation is signification and signification is performed by signs. Ac-
cording to Peirce, signs are realised by three basic semiotic components: shape, content,
and referent.

In the remainder of this chapter, these components and their relations are described in
more detail. This enables to describe the structure in signs as well as signs in a structure.
Each sign appears in a context which, in turn, provides the content for a more abstract
sign. Therefore, semiotics provides the formal basis for a computational implementation
of Dreyfus’ hierarchy of contexts (see section 2.2.1).

13.2. The Three Phenomenal Categories

Peirce categorised subjective experience into Firstness, Secondness, and Thirdness. “I
analyze experience, which is the cognitive resultant of our past lives, and find in it three
elements. I call them Categories” (CP 2.84).2

Peirce described the three categories of experience as follows.

It seems, then, that the true categories of consciousness are: first, feeling,
the consciousness which can be included with an instant of time, passive
consciousness of quality, without recognition or analysis; second, consciousness
of an interruption into the field of consciousness, sense of resistance, of an
external fact, of another something; third, synthetic consciousness, binding
time together, sense of learning, thought. (CP 1.377, emphases added)

1To Searle, this function requires a biochemical material whereas Peirce remains indifferent on this
account.

2Originally, Peirce called these categories ‘cenopythagorean categories’ (CP 1.351; CP 8.328), influenced
by the Pythagorean view of nature being ordered by natural numbers (Sörensen et al. 2012). This
investigation, however, concerns mostly their phenomenological properties.

The present excerpt of Peirce’ work is therefore by no means complete. The presentation is focussed
on the relevant components of mental representation and their relations.
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Figure 13.1.: The Directions of Fit in a Mental Representation.

All mental phenomena consist of three basic components: shape, content, and referent.
These components can establish three general relations with one another: feeling, fact,
and thought. A feeling is the appearance of content as a shape, a fact is content about a
referent, and a thought is a shape that represents a referent in virtue of content.
Fact and thought are in a mind-to-world direction of fit (see section 12.3). Content

adapts to a real referent and shapes adapt to this referent in virtue of their content.
Feelings are bidirectional. Content can only present its referent by appearing as a
phenomenal shape. Also vice versa: Any appearance presents at least its own presence.3

Figure 13.1 shows the direction of fit of these relations (see section 12.3).
In the following, these phenomena are described with one of Peirce’ rather early

taxonomies of only three semiotic types: indices, icons, and symbols. Later, he refined
his theory to define hundreds of different shades between these types.

13.2.1. Shapes, Feelings, and Indices

The first category consists of feelings. Feelings define a relation between shape and content.
In virtue of feelings, content can be perceived as phenomenal shape and phenomenal
shapes can be interpreted as content.

From first-person-perspective, shapes are singular appearances. Take the shape ‘a’. To
a system that perceives this shape as a feeling, it is an indivisible quality.4 This quality
has structure only when being observed by another system (e.g. ‘a’ has a bulgy bottom

3Towards the end of this chapter, an argument for the second direction is presented.
4Reading about indivisible qualities, the modern day understanding of ‘qualia’ comes to mind. Crane
mentions, however, that, although Peirce introduced the term ‘qualia’, ‘he was talking about what
experience is like, in a general sense, not restricted to the qualia of experience in the sense in which it
is normally meant today.’ (Crane 2014, p. 71)
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and a hook at the top). For the observing system, however, the shape is not a feeling at
all.

Feelings establish the presence of a particular content. They relate shape and content
and, therefore, they enable to interpret shapes as content and to perceive content as a
shape. Feelings provide the content for the system’s most basic perception.
The shapes of basic perception are interpreted by their system as the properties of

objects (e.g. the redness of a flower or the smoothness of a stone). Without access
to entities ‘below’ basic perception, the system has no alternative but to suppose that
these basic perceptions are an actual part of the world. Once something appears red, the
necessary content of this shape is that there is red.5

In other words, cognitive systems implicitly “suppose [the objects] have capacities in
themselves which may or may not be already actualized, which may or may not ever be
actualized, although [these systems] can know nothing of such possibilities [except] so far
as they are actualized.” (CP 1.25)
Feelings relate shape and content so immediately that their system perceives both as

the same. But the shape of a feeling is only an index for its content: shapes indicate
content that presents the presence of some thing.

13.2.2. Referents, Facts, and Icons

The second category consists of facts. Facts define a relation between referent and content.
They provide the content necessary to recognise that this referent is part of the world.

Peirce explains that

the second is precisely that which cannot be without the first. It meets us in
such facts as another, relation, compulsion, effect, dependence, independence,
negation, occurrence, reality, result. A thing cannot be other, negative, or
independent, without a first to or of which it shall be other, negative, or
independent. (CP 1.358)

A referent is a short segment in a temporal sequence of feelings. This sequence is
often referred to as ‘stream of consciousness’ (psychologically introduced by James 1892;
continued, for example, by Pope and Singer 1978; Raymond et al. 1992; Pope 2013; Potter
et al. 2014).
Take [‘a’, ‘c’] as a referent. To a system that recognises this referent as a fact, its

individual shapes are the case and their sequence is necessary. Only observed by another

5The same applies to dreams or hallucinations. The characteristic property of such an episode is exactly
that: the perceived appearances present themselves as if they were part of the world.
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Figure 13.2.: Indices as Representational Elements.

system, this sequence has alternatives (e.g. then ‘a’ might as well be followed by ‘b’).
Referents can be recognised as facts that convey, for example, succession (i.e. ‘preceding’)

or unity (i.e. ‘being with’). In particular, a fact can present that ‘a’ precedes ‘c’ or that
‘a’ is with ‘c’. In general, facts make their system understand that circumstances are the
case.
Referents depend on feelings in the same way in which statements like ‘this apple is

a fruit’ or ‘Poland is next to Germany’ require that their words have content. Facts
implicitly presuppose their own necessity just like these statements implicitly presuppose
their own truth.
A feeling conveys that it is in the world. The relation between content and shape is

permanent: the presence of red is always indicated by the appearance of red. A fact, in
contrast, conveys that some other thing is in the world (i.e. the referent). This relation
is context-dependent.
To recognise the fact that there is an old friend from school, for example, depends

strongly on the current situation. In your home town, the same person is recognised far
more easily than, for example, during vacation in a foreign country.

Facts convey information about a referent. They are an icon for this referent. If facts
provide structural information about the referent, then they must feature representational
elements (for an argument, see van Gelder 1989, pp. 62, 225). The representational
elements of icons are indices. Facts are icons with feelings as their indices.
The individual feelings are irrelevant for the fact they compose. See, for example,

figure 13.2: both bottom structures are icons that present a triangle. The shapes of their
individual representational elements are irrelevant.
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13.2.3. Content, Thoughts, and Symbols

The third category consists of thoughts. Thoughts define a relation between shape and
referent. This relation is what enables mental representation. A thought is the feeling of
a fact that is detached from its referent: content that appears in absence of its reference
(i.e. an inexistent object).

Peirce conceived of thoughts as central to cognition. He made this clear when he
described the third ‘in between’. “Category the Third is the Idea of that which is such as
it is as being a Third, or Medium, between a Second and its First. That is to say, it is
Representation as an element of the Phenomenon.” (CP 5.66, emphasis added)

From first-person-perspective, content is a mesh of interwoven facts, possible transitions,
and alternatives. Take

{
[‘a’, ‘b’], [‘a’, ‘c’]

}
as structural content. To the system that has

this content, it determines all that is conceivable. Observed by another system, however,
this structure does only cover what is conceivable to the observed system.
Structural content can be interpreted logically. The content above, for example, can

be interpreted as ‘a’ → (‘b’ ∨ ‘c’) or ‘a’ → (‘b’ ∧ ‘c’). Content can also depict causal
dependencies, simple co-occurrences, or anything really. For example, that ‘a’ precedes ‘b’
causes that ‘a’ precedes ‘c’ or that ‘a’ is with ‘b’ is more often than that ‘a’ is with ‘c’.

The content of a thought is an accumulation of facts. The content of a combination
of these facts is more general than the content of an individual fact. Feelings present
themselves, facts present a particular reference, and thoughts present a general concept.
Feelings appear as themselves, facts appear as a concrete reference, and thoughts appear
as an abstract reference.

We have here a first, a second, and a third. The first is a positive qualitative
possibility, in itself nothing more. The second is an existent thing without
any mode of being less than existence, but determined by that first. A third
has a mode of being which consists in the Secondnesses that it determines,
the mode of being of a law, or concept. (CP 1.536)

Laws and concepts organise facts into patterns of decisions, options, and possible
alternatives that have been internalised or learnt. These structures define cognitive
categories to classify various individual referents.
“[Thirdness] brings the information into the mind, or determines the idea and gives it

body. It is informing thought, or cognition. But take away the psychological or accidental
human element, and in this genuine Thirdness we see the operation of a sign.” (CP 1.537,
emphasis added)
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Thoughts do not contain objective facts about the world but abstract concepts that are
learnt under the influence of uncountable bodily and situational dispositions. They are
symbolic mental representations because their shape is not determined by necessity (i.e.
feelings) or similarity (i.e. facts) but by convention or habit. This versatility explains not
only why symbols are used in language but also why Peirce, Harnad, and so many others
assume that cognition works symbolically in general.

13.3. At the Ground

If basic perceptions already contain their own presence, then what does their content
ground in that is not content already?
To answer this question, consider ‘

树
’. You understand that

树
is part of the world

without the need to follow any convention. The shape conveys to you its own presence
although you do not know what it means.
In fact, it is hard to imagine a system that could not obtain this most fundamental

form of content from nothing more than the appearance of a random shape.
In the same way, every phenomenal shape already conveys a feeling. Shapes alone

enable to understand that they are present—even if no one shares this knowledge. This
content might not be objectively true but to whom the shape appears, its truth is literally
self-evident.

This phenomenal content of shapes is unavoidable. All perception always already
contains what it appears as and this basic phenomenal content provides the foundation
for intentional content in more abstract mental representations.
Kant supported this assumption and shared Peirce’ assessment that, for cognitive

systems, the appearance of feelings is not only necessary but sufficient to infer that this
shape is part of the world.

I am no more necessitated to draw inferences in respect of the reality of
external objects than I am in regard to the reality of the objects of my inner
sense (my thoughts), for in both cases they are nothing but representations, the
immediate perception (consciousness) of which is at the same time a sufficient
proof of their reality. (CPR A 371, emphasis added)

Without prior content in perception, how should feelings imply any presence in the
first place? All phenomenal shapes have phenomenal content, this content is always self-
evident, and their system is the only authority considering this content.
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13.4. Below the Ground

From first-person-perspective, mental representations cannot be grounded in anything
else but basic perception. To predetermine the shapes of basic perception, however,
violates methodological solipsism because the phenomenal content of basic perception is
determined by this shape. All abstract content in this system would be predetermined by
proxy.
As a consequence, the phenomenal content in basic perception must be generated

‘below’ the system’s level of awareness. The phenomenal content in basic perception must
be composed from from something that does not already have content to the system.
Many approaches to embodied cognition suggest the same. O’Regan and Noë, for

example, argue that basic phenomenal content is acquired in virtue of unconscious
sensorimotor contingencies (see section 8.3.1). Gibson describes the need to determine
sensorimotor ‘invariants’ (see section 7.2) prior to conscious perception.

Harnad does not explicitly mention an unconscious ground to his iconic projections (see
figure 2.1 on page 15). If they provide structural information, however, then they must
also consist of representational elements. If icons are his elements of basic perception,
therefore, then their elements cannot be perceivable themselves.
In his description of Firstness, Peirce also hinted at elements below awareness. He

described that basic perception is only apparently immediate.

The immediate present, could we seize it, would have no character but its
Firstness. Not that I mean to say that immediate consciousness (a pure
fiction, by the way), would be Firstness, but that the quality of what we
are immediately conscious of, which is no fiction, is Firstness. (CP 1.343,
emphases added)

According to the emphases, the mind must feature elements that reference external
reality more directly and prior to the first phenomena that appear to the mind. If we
adopt Peirce’ terminology, then the elements below feelings constitute a category of
Zeroness. (also adopted, for example, by Bense 1975)

The elements of Zeroness are necessary for phenomenal content and therefore, they
cannot be conceived of by their system. Only from third-person-perspective, the elements
of Zeroness can be observed at the ground of cognition.
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Three points are most important to take away from the theoretical part of this work.
Firstly, public representations (e.g. words) imply private representation (i.e. mental

representation) but private representations do not imply public representation. This is
a consequence of indirect realism which states that mental representations are the only
epistemological access to reality and, therefore, the only access to public representations
as well.
Secondly, and following from the previous point, the distinction between private and

public representation depends on the system making the distinction. Private representa-
tions differ from public representations insofar as they are only in relation with the system
assessing their privacy. Public representations, in contrast, can be in relation with any
system.
Thirdly, and following from the previous point, as mental representations are private,

they are essentially inaccessible to anyone but the system of whose mental model they are
a part. If intentional content is the mark of mental representation, then it is fundamentally
impossible to prove its absence in another (e.g. computational) system.

Intentional content is not only hard to describe. Instead, from third-person-perspective,
intentional content in another system simply does not exist—observing the system from
the inside does not change this.

For intentionality, the phenomenal experience in first-person-perspective is much more
relevant than observation. This is quite obvious when the generation of one’s own
intentional content—the only example available—is considered. There is no other source
for intentional content than basic perception.

14.1. Summary

Searle assumes computational procedures to be incapable of producing intentionality. They
might simulate intentionality, but simulated intentionality is not actual intentionality—just
like a simulated tornado is not an actual tornado. According to him, tornadoes and
intentionality cannot be computed. To realise them, both need to be materialised.
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You will indeed be disappointed if you expect simulations to produce tornadoes.
Accordingly, if you look for intentionality in another system (e.g. the Chinese room) then,
of course, you will not find any.

This is not due to the system’s material but due to the fact that intentional content can
only be experienced by its own system. No observation can yield intentional content—be
it in the form of computational syntax or causal biochemical interactions—just like an
observation of the Eiffel tower is different from the Eiffel tower itself.
On the one hand, Searle’s account on intentionality requires to take the first-person-

perspective. This, in turn, requires to conceive of mental representation as subjective (see
chapter 3).
On the other hand, however, Searle also assumes that intentionality in the Chinese

room could be observed—despite the fact that intentionality has never been observed
in any biological system except oneself.1 Observations of human neuroanatomy simply
cannot explain intentional content.
This contradiction between these two of Searle’s premises can only be resolved by

rejecting one of them. To reject the first premise means to search for a linguistic solution
to the soft symbol grounding problem. To reject the second premise means to search for
a phenomenological solution to the hard symbol grounding problem (see chapter 4).

14.2. Recapitulation and Proceeding

In a purely phenomenological model of cognition, basic perception is a phenomenal ‘atom’.
The phenomenal shapes of basic perception might be different in each cognitive system.
Therefore, basic perception must be considered as a symbolic representation of external
referents (i.e. established by habit)—not as an index (i.e. established by necessity) or an
icon (i.e. established by similarity).

According to embodied cognition, however, basic perception is not atomic but itself is
composed of imperceivable representational elements. A semiotic analysis of symbolic
representations enables to model these elements and the relations between them.

Peirce’ semiotics is phenomenological and therefore it is compatible to Searle’s concep-
tion of intentionality. It provides the means necessary to formalise the initial generation
(i.e. semiosis) of basic perception as a symbolic sign.

From the unobservability of phenomenal content it follows that a successful simulation
of intentional content requires to assume phenomenal content by stipulation—just like

1In fact, this exception is not an exception al all because, in oneself, intentionality is not observed but
experienced.
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we accept that the basic perception of fellow human beings consists in unobservable
subjective phenomena that have actual phenomenal content. In the following practical
part, this premise provides the basis for a workable simulation for the generation of mental
representations.

Symbolic signs are defined by the semiotic relations between phenomenal shape, inten-
tional content, and external referent. These relations are established by procedures. In
the following, these procedures are implemented to eventually simulate the generation of
basic perception in a computational system. More complex representations are generated
starting from these basic perceptions.
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Formalising Mental Models
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So far, two different types of model play an important role. Mental models in cognitive
systems. They enable their system to predict external reality. Cognitive models of cognitive
systems. They enable cognitive scientist to predict an autonomous agent.

Three components are crucial in both cases: 1) the model itself, 2) the system that the
model describes, 3) and the observer of the system—who is also the interpreter of the
model—for whom the model serves as a description.

In the case of mental models, the observer is the cognitive system, the other system is
external reality, actions are motor activations, and reactions are sensor activations. Motor
activations are emitted by the cognitive system and sensor activations are emitted by
external reality.

A mental model establishes relations between subjective representations that postulate
to its cognitive system a sufficient causal influence between these emissions. These mental
relations determine the system’s behaviour because they provide a conceivable explanation
for external reality as a world of perceivable objects in the first place.
In the case of cognitive models, the observer is a cognitive scientist, the other system

is an autonomous agent, actions are experiments, and reactions are behavioural data.
Experiments are emitted by the cognitive scientist and the behaviour is emitted by the
autonomous agent.
A cognitive model establishes relations between objective representations. These rela-

tions postulate to the cognitive scientist a sufficient causal influence between experimental
settings and the agent’s behavioural reaction. These formal relations determine an under-
standing for the generation of mental representations because they provide a conceivable
explanation for autonomous agents as cognitive systems in the first place.

A comprehensive cognitive model establishes its formal relations not only according to
observed relations between experiments and behaviour but also based in the relations in a
mental model. From the assumption that representations in mental models are essentially
subjective, it follows that not only mental models, but cognitive models as well, must be
firmly grounded in subjective experience.
The remainder of this part fleshes out a conception of mental models that serves as
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the heart of such a cognitive model. The next part provides an according formalisation
and connects it to a formal conception of external reality. This connection formalises the
interface between agent and environment. The following part provides a computational
cognitive model that describes how the data from this interface is integrated into a mental
model as this part presents it.

15.1. A Semiotic Conception of Models

Traditionally, models are considered to predict the aspects of another system independent
from the interpreter. The following interpretation of ‘prediction’, however, enables another
conception that will be referred to as ‘semiotic model’. Two particular points make a
semiotic conception of models intrinsically dependent on their interpreter.

The first point is that the ‘prediction’ that models enable does not refer to a moment in
the future that is characterised by the predicted aspects starting to be the case. Instead,
the future connotation of ‘prediction’ refers to a moment that is characterised by these
aspects starting to appear to an observer.

The second point is that predictions are intrinsically dependent on the actions of this
observer. This is not always obvious. Predictions of geographical features as they can be
inferred from a map, for example, describe aspects that seem to be independent from the
actions of its interpreter. However, they appear only under particular conditions.
Maps depict these conditions explicitly. They describe which route to take such that

particular geographical aspects appear. In fact, the act of navigation is is fundamental to
any map. Without the observer’s ability to move, maps do not have a purpose and there
would be no ground to call what the map does a ‘prediction’ of geographical features at
all.
Like any model, maps enable an observer to predict the reactions of another system

to their own actions. In the case of a street map, this system is a particular network of
streets, its reaction may be the appearance of a junction, and the condition is taking a
particular turn as depicted on the map.

The observer’s actions need not be physical. Models can also predict a system’s reaction
to a change in the observer’s attention towards particular aspects of a system.

Consider a photograph as the model of its subject: photographs enable an observer to
predict aspects of their subject, depending on the parts of the photograph towards which
the observer chooses to direct their awareness.

According to this understanding, in the following, all models are considered to describe
the reaction of another system to the actions of their interpreter. Action and reaction are
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referred to as ‘emissions’ from either the observer or from the observed system.1

15.2. A Linguistic Model as an Example

Models consist of symbols. A linguistic model, for example, consists of linguistic symbols,
a computational model consists of computational symbols, and a mental model consists
of mental symbols (i.e. mental representations).

In general, models establish a relation between these symbols. This can be illustrated
with language. The sentence ‘the town hall is close to the marketplace’ is a linguistic
model. It establishes a relation ‘close’ between the subordinate shapes ‘town hall’ and
‘marketplace’.

The sentence constitutes an icon for all referents with a similar structure. This icon is
the content that the town hall is close to the marketplace. The referents are all things
that are described by this content. The content enables to predict the appearance of
‘town hall’ if the observer moves towards the ‘marketplace’.

A symbol is a shape that is associated to a content. This content can be described, for
example, by a model. The shape is a singular element, the contained model is a structure
of elements, and the referent is such that the model is an iconic depiction of it.2 To also
remain iconic during change, the model must be influenced by a causal coupling to its
referent.

In a representation, content mediates between shape and referent. The shape re-presents
the referent because it indicates content that presents the referent.3

Accordingly, extending the above sentence with a label makes it a linguistic re-present-
ation: ‘in a village, the town hall is close to the marketplace’. Now, the linguistic
shape ‘village’ indicates the presence of referents in which the town hall is close to the
marketplace. ‘Village’ now is a symbol for systems where the ‘town hall’ is ‘close’ to the
‘marketplace’ (e.g. villages)—whatever the individual shapes stand for.

Symbols can be nested. A shape can stand for its model in another, more complex,
model, just like ‘town hall’ and ‘marketplace’. In this sense, symbols can contain various
other models and models can contain various other symbols.

1This conception of models is developed independently. Elsewhere, models that describe the reaction of
one system to the actions of another are also called ‘action models’ (for a recent overview, see Čertickỳ
2013). The model concept as it is developed here is defined by this capacity. As a consequence, in the
following, every model is considered to be an action model as well.

2Notice the difference to intentional psychology in section 3.1.2, where content is considered as a singular
representation without structure.

3According to this understanding, representation is symbolic, indication is indexical, and presentation is
iconic. The differences are formalised in the next chapter.
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In mental models, the situation is similar. The difference is that the content in
a mental model is not semantic but intentional and its shapes are not linguistic but
phenomenal. Intentional content is considered prior to and necessary for semantic content
and phenomenal shapes are considered prior to and necessary for linguistic shapes.

Mental representations that consist of singular shape and structural content enable to
define generality and abstraction relations: a composition of intentional content is more
general than its constitutive content. The phenomenal shape of a mental representation
is more abstract than the shapes of the mental representations that it contains.

15.3. The World as a Particular Model of Reality

An object is not immediately influenced by the language in which it is described. In the
same way, reality is not immediately influenced by the properties of a mental model. The
properties of a particular model do not determine what the model is generated from but
rather what this source is described as.
Among the properties of models are, for example, whether they are deterministic

or probabilistic, whether they are fully or only partially observable, whether they are
continuous or discrete in state and time, and whether they remain constant or adapt to
the system that they describe.

Whether a model is probabilistic or deterministic, however, says nothing about whether
its referent is probabilistic or not but merely that it can be described probabilistically.
Accordingly, the properties of a mental model first have an impact on the world as which
its cognitive system conceives of reality, not on reality itself.

In a cognitive model for the generation of mental models, therefore, the goal cannot be
to describe the model of an environment with particular properties, because the properties
of external reality are fundamentally inaccessible (see section 3.1.1). The goal rather has
to be to generate a model with particular properties that reflect how cognitive systems
conceive of their world.
These properties are firmly grounded in introspection and can be derived, for ex-

ample, from Peirce’ phenomenological approach to semiotics, from Searle’s description of
intentionality, or from recent advances in embodied cognition.

15.4. Postulated Properties of External Reality

To simulate processes that generate a model of immediately imperceivable system like
external reality, some properties of this system have to be postulated. These premises
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determine requirements for the processes that are supposed to enable to predict this
system’s emissions. These requirements immediately constrain feasible architectures of
computational cognitive models.

Mental models describe reality as a hierarchical world of objects. However, this model is
generated from an sequential exchange of unconscious sensorimotor information between
cognitive system and external reality (see section 13.4).
Theories on embodied cognition describe this exchange under temporal pressure. Ac-

cording to Wilson, these theories

highlight a weakness of traditional artificial intelligence models, which are
generally allowed to build up and manipulate internal representations of a
situation at their leisure. A real creature in a real environment, it is pointed
out, has no such leisure. It must cope with predators, prey, stationary objects,
and terrain as fast as the situation dishes them out. (Wilson 2002, p. 627)

Van Gelder also describes classical models of cognition as “essentially atemporal; there
are no inherent constraints on the timing of the various internal operations with respect
to each other or change in the environment.” (van Gelder 1995, p. 360)
Like in a turn-based board game, traditional artificial intelligence waits for the envir-

onment to make a move and expects it to wait just the same. This strategy must fail
for real-time interaction with complex and dynamic environments. The time it takes to
process sensor information and produce an appropriate motor response is critical.

Time is the main reason why the frame problem is an actual problem. Events in external
reality demand an appropriate and immediate response by the system. Consider running:
bipeds place their feet just in time for catching their body weight while continuously falling
forwards. Natural running would be impossible if the time to calculate feet positioning
would exceed the time it takes to fall flat on your face.

The continual exchange of sensorimotor information between system and reality requires
that information can be stored in, and retrieved from, the mental model reactively and
on-the-fly.

The model has to be generated from interaction to incorporate the bodily particularities
of its cognitive system. This interaction has to be reactive to enable the system to act on
time.
In summary, the major premises are: 1) external reality enters cognitive systems as a

sequence of pre-conceptual emissions (i.e. sensor activations), 2) the system’s reactions to
these emissions are also pre-conceptual emissions (i.e. motor activations), 3) the exchange
of subsequent emissions between both systems must be reactive, 4) and the underlying
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model must be adaptable on-the-fly.

15.5. A Reactive Model for Dynamic Environments

The previous points set the frame for the information exchange between cognitive system
and external reality. This enables to take a closer look into the general processing of
information in mental models without going into detail on the particular processes that
enable, for example, the prediction of external events.
This section first describes how incoming sensor information propagates throughout a

mental model and how this information is converted into outgoing motor information.
According to a classical conception in artificial intelligence, these processes separate
perception from action similar to how Brooks describes sense-model-plan-act architectures
(see section 7.3). This idea is contrasted against a new, and more flexible, design.

Accordingly, two general ideas are presented on how information can travel along the
representations in a mental model. Telecommunication systems provide a viable analogy.
A telecommunication system consists of two parties that exchange information. The
communicating parties correspond to the cognitive system and its external reality.

Telecommunication systems appear in three broad variants: simplex, half-duplex, and
full-duplex systems. In a simplex system, information flows in one direction only (e.g.
radio or television broadcasts). Simplex systems are not suitable to describe cognitive
systems because they exclude either sensor or motor information.

Half-duplex and full-duplex systems, however, correspond roughly to cognitive systems
with two different types of mental model. In the following, cognitive systems according
to classical artificial intelligence are described as half-duplex systems. Afterwards, the
analogy is used to provide a description of cognition that is inspired by full-duplex systems.

15.5.1. The Structure of a Mental Model

The structure of a mental model enables to infer a flow of information. Therefore, first, it
must be outlined how mental representations are organised in a mental model such that
they convey to their system a world of objects.
Systems generate their mental model during interaction with external reality. This

sensorimotor interaction is reactive and its emissions are pre-conceptual to the cognitive
system. The model enables, for example, goal-directed behaviour by predicting behaviour
(i.e. a sequence of emissions).

Mental models enable to estimate the probability of events. Therefore, relations between
mental representations must be probabilistic. However, the distribution of probabilities
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can change with the state of the environment. This means that the model needs to be
able to describe non-stationary probability distributions.

From the system’s perspective, its mental model is the world and the intentional content
of its subjective mental representations are objects (see chapters 3 and 10). These objects
are in part-of relations with each other. Consider, for example, that doors can be part of
a house as well as part of a car.
This phenomenological premise is reflected in the nested symbolic representations of

semiotic models (see the introduction to this chapter).
The resulting structure is a partially ordered set. The highest element in this hierarchy

is a model of the world as a whole. The lowest elements are sensorimotor activations that
are below the system’s level of awareness (see section 13.4). These elements can only be
perceived by an observer. They compose the system’s basic perception (see section 13.3).

15.5.2. A Half-duplex Mental Model

In half-duplex systems, only one party can send information at a time. Each party is
either sender or receiver, but never both. An example for such a system is a walkie-talkie.
The flow of information in such a system is illustrated in figure 15.1. Half-duplex

systems are analogous to how artificial intelligence traditionally conceives of internal
models of the environment.

Sensor activation at the lowest level is propagated upwards. On its way it is translated
into perception that enables the generation of an internal model of the environment. This
model is supplied to the most abstract layer of cognition where the system performs
planning.

The level of planning is the only connection between incoming and outgoing information.
From here, information takes its way out of the system over task execution and action
control to eventually reach the environment in the form of motor activation (see also
figure 7.2a on page 59).

Incoming information is passed on up until it reaches the highest level. Consider that
processing in each level requires a constant amount of time δ. To reach the highest level,
therefore, incoming information requires a time δ(L− 1), where L is the total number of
levels in the model.

At the highest level, the incoming information is also processed in time δ. Afterwards,
the resulting information is passed on to the level below until it reaches the lowest level.
Therefore, to reach the lowest level, outgoing information requires a time δ(L− 1) as well.

From this, it follows that the total reaction time of a cognitive system with such a
mental model adds up to δ(3L− 2). The more abstract a half-duplex model is, the longer
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Figure 15.1.: A Half-duplex Mental Model.
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it takes for its system to react to the environment.
Susan Hurley refers to systems like these as ‘classical sandwiches’. She describes them

as follows. ‘A view of perception and action as separate input and output systems
complements a view of thought and cognition as “central” and in turn separate from the
“peripheral” input and output systems.’ (Hurley 2002, p. 20)

Figure 15.1 shows the input system at the left and the output systems at the right as
two separate components. Both are connected only by a central ‘cognitive module’ at the
highest level.
Such a model separates action and perception like the filling of a sandwich separates

two layers of white bread. The more processing between perception and action, the bigger
their distance, the looser the model’s coupling to reality, and the stronger the system’s
detachment from the world.
All cognitive systems with a half-duplex mental model either suffer from the same

detachment from reality or from an artificial limitation of abstractness that is necessary
to avoid such detachment.

Brooks criticises sense-model-plan-act architectures exactly because they exhibit such
a separating phase of rational contemplation in between all perception and action.

15.5.3. A Full-duplex Mental Model

In full-duplex systems, one party can send information before information from the other
party has arrived. An example is the telephone.

The parallel exchange of information is usually achieved with two channels that enable
for synchronous communication. This parallelism becomes problematic if information has
to leave the system before all relevant information has fully arrived.

To increase the reactivity of a mental model, therefore, it is not enough to provide two
separate information channels. Half-duplex models already feature discrete sensor and
motor ‘lanes’. The goal is rather to find a way such that information does not need to
travel all the way from the lowest to the highest level of the mental model.

Figure 15.2 illustrates the flow of information in a full-duplex mental model. Inputs are
propagated depending on what type of processing is sufficient (i.e. low-level processing
for simple tasks) and necessary (i.e. low-level processing for time critical tasks and high-
level processing for complex tasks).

The model describes the environment at each level. If time is of the essence, information
can be processed reactively. Therefore, time critical information flows in lower levels to
enable faster, more immediate reaction.
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Figure 15.2.: A Full-duplex Mental Model.
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More intricate tasks require to propagate information to higher levels to make deliberative
decisions. Higher levels enable to consider more complex information and long-term
dependencies.
In general, the flow of information favours reactivity. By default, information is

processed locally. Only if the current information is not recognised at this level, it is
propagated to a more abstract level.
This conditional junction enables information to be processed much faster than in a

half-duplex model. Depending on previous experience that is already contained in the
model, the ascent of information can be omitted in favour of reactivity.

The required amount of time for reaction in a full-duplex mental model is considerably
lower compared to half-duplex models. The worst case is the propagation of completely
unknown information to the most abstract level. This requires δ(3L− 2), just like in a
half-duplex model.

Repeatedly occurring information, however, can be processed as early as in the lowest
level. In the best case, information is processed in δ time, independent from the model’s
number of levels.
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The formal basics in this chapter are divided into three sections. The three sections
correspond to the three components that are relevant to a model (see the introduction
to chapter 15). The described system is external reality, the model of this system is the
mental model, and the interpreter of this model is the cognitive system.
The first section formalises external reality. As external reality is not immediately

perceivable, premises can only be inferred by observing the information other cognitive
systems exchange with it. The elements of these observations are sensorimotor emissions
that enter the cognitive system in form of a sequence but are imperceivable by the system
itself.

The second section formalises a model that describes this sensorimotor sequence. This
description enables to predict or select its individual emissions. These pre-conceptual
elements are composed into the structural content of mental representations in this model,
starting from which the system begins to perceive a world.

This model is different from the formalisation of external reality in the first section. A
formalisation of mental models must be cognitively plausible. A formalisation of external
reality, in contrast, is principally independent of human cognition.

The third section formalises the cognitive system as an interface between mental model
and external reality. This interface relates sensorimotor emissions to one another for them
to serve as referents of the representations in a mental model. This interface effectively
defines input and output data for the algorithms of a computational cognitive model for
the generation of mental representations.
The next chapter provides examples for semiotic models. The next part eventually

describes how mental representations are generated from sensorimotor referents.

16.1. Formalising External Reality

The literature contains various formal descriptions for systems that emit sequences. In
the following, these sequences will also be referred to as ‘trajectories’. The most popular
formalisations are the different variations of Markov processes.
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Markov chains are observable systems that are discrete in state and time. Such discrete
systems can be conceived of as directed graphs, where the nodes represent emissions
and an edge represents the immediate temporal succession from one emission to another.
Markov chains can only emit trajectories, where there is a fixed probability distribution
over all emissions given the last emission.
Markov decision processes are systems with static trajectories that are coupled to the

emissions of another system. The system itself is also referred to as ‘controlled’ and the
coupled system as ‘controlling’.

A Markov decision process is a Markov chain where the edges are labelled, for example,
with the emissions of a controlling agent (e.g. motor activations) and the nodes are its
own emissions (e.g. sensor activations).1

Markov chains and Markov decision processes are effectively deterministic finite state
automata that enable a system to recognise (i.e. parse) particular environments as well as
predict (i.e. generate) the immediate consequences of their actions in such an environment.
This is illustrated in the next chapter with the example of the centrifugal governor.

The sequences that can be generated by Markov chains and Markov decision processes,
however, are too simple to simulate the information exchange between cognitive systems
and external reality. More complex sequences can be generated by partially observable
models that feature an internal state.

16.1.1. Partially Observable Models

Models that enable to predict the emissions of another system are usually distinguished
into those that assume a hidden state in this system and those that do not. Those
that assume a hidden state need to represent this state in order to consider it in their
predictions.
As a consequence, models that consider a hidden state in the other system feature

hidden states themselves. Accordingly, models can be distinguished into observable models
and partially observable models.

Order-n Markov predictors generalise Markov chains by considering not only the single
last, but the last n emissions, instead. The sequence of the n previous emissions is referred
to as ‘history’. In the following, this history is considered as the state of the model. The
generalisation from the last element to a history of n elements can be applied to all

1Besides this graphical conception of an observable system, there is also a propositional conception
that uses propositional action languages to describe the environment’s reactions to the actions of an
agent. The propositional and the graphical variants can be translated into one another. (Gelfond and
Lifschitz 1998)

118



16. Formal Basics on Semiotic Models

Markovian approaches.
Hidden Markov models have internal states which are explicitly supposed to represent

states in the described system that are hidden from direct observation. States are assumed
to influence only the emissions of their own system.
These models determine probability distributions for the transition from one state

into another. Each of these hidden states is associated with a probability distribution of
emissions. The sequences generated by hidden Markov models are not controlled: they
depend only on the model’s internal state but not on the influence of another system like
the sensorimotor sequences emitted by cognitive systems. (Rabiner 1989)
Partially observable Markov decision processes are to hidden Markov models what

Markov decision processes are to Markov chains. Partially observable Markov decision
processes are hidden Markov models where the edges between states and from states to
the model’s own emissions are labelled with the emissions of a controlling system (e.g. an
agent).
Unfortunately, partially observable Markov decision processes are not goal-agnostic.

They describe not only another system but also a particular goal state for it. This enables,
for example, to formalise tasks for an autonomous agent. This is problematic, however,
for generating a model that is supposed to facilitate different tasks.
Partially observable systems are partially observable Markov decision processes that

are task indifferent. They are 5-tuples (E,motor, T,O, sensor), where E is a set of hidden
states, motor is a set of motor activations, T : e × motor × E → [0, 1] describes the
probability of any successor state when performing a particular action in a particular
present state, O : e× sensor→ [0, 1] describes the probability of a hidden state appearing
as a particular emission, and sensor is a set of emissions that an agent can receive from
the environment as sensor activation.

Unfortunately, the transition function T limits the probability of a transition between
states to a stationary probability distribution. The state of external reality, however,
must be assumed to transition erratically (i.e. according to a non-stationary probability
distribution or even an adversary). In the following, systems that emit an erratic sequence
will be referred to as ‘dynamic’.

16.1.2. Individual Sequences

Recently, the learning of individual sequences has been given a rigorous formal foundation
with on-line convex optimisation (see, for example, Feder et al. 1992; Littlestone and
Warmuth 1994; Cesa-Bianchi, Lugosi, et al. 1999; Cesa-Bianchi and Lugosi 2006). Tasks
in on-line convex optimisation always include a player that performs actions. Only after
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the action has been executed, its outcomes are disclosed.
Outcomes have the form of a loss value associated with the performed action under the

current circumstances. Losses do not follow a particular probability distribution. Within
limits, these losses can be random or even chosen by an adversary of the player.

Actions are defined in this framework as the convex set of real-valued vectors K ⊆ Rn

and losses are a family of individual functions ft ∈ F : K → R. (Hazan 2016, pp. 4–5)
An example is on-line classification, where xt ∈ X is the input, yt ∈ Y is the target,

and pt ∈ D is the output at time t. Target and output do not need to be from the same
set, to allow, for example, a deterministic binary target yt ∈ { 0, 1 } but a probabilistic
interpretation of output pt ∈ [0, 1] ⊆ R.

Target and output are generated by two individual hypotheses ht : X → Y , where each
ht is from the fixed hypothesis space H. Actions are defined as K = D = [0, 1] and the
loss at time t is defined as ft(xt) = |yt−ht(xt)|, where ht is the agent’s current hypothesis
and yt has been generated from an unknown hypothesis.

The performance of on-line convex optimisation procedures is measured in regret. Regret
is the difference between the actual cumulative loss and the cumulative loss of the single
best hypothesis from H over all samples up to the current time t. (Shalev-Shwartz 2012,
pp. 108–111)
On-line convex optimisation covers samples from non-stationary distributions. This

generality, however, comes at the price of a predefined hypothesis space. Algorithms
effectively learn to ‘trust’ the best expert hypothesis and, as a consequence, can only be
compared against such given expert. (Cesa-Bianchi and Lugosi 2006, pp. 1–3)
Experts can be any generative baseline approach that supplies on-line convex optim-

isation algorithms with output ‘proposals’. Without experts, however, on-line convex
optimisation cannot learn anything.

Eban et al. (2012) propose an approach to sequence prediction that learns these experts
from scratch. However, their method requires temporally separate training and test
examples and, therefore, it introduces the need for a separate training phase to generate
F . A real cognitive system, however, needs to learn emission functions continuously and
on-the-fly.

16.1.3. Static Trajectories

In dynamic systems theory, a sequence of emissions is referred to as ‘trajectory’. Tem-
porally continuous trajectories can be described by differential equations and temporally
discrete trajectories can be described by difference equations. (Robinson 2012)
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An erratic sequence of emissions is a discrete trajectory. The subsequence of an
emission’s predecessors is its ‘history’.2

Definition 1. Static trajectories are sequences of emissions xt with a history [ xn ]t−1
n=t−h =

xt−h, xt−h+1, ..., xt−1 of length 1 ≤ h.

xt = f
(
[ xn ]t−1

n=t−h
)

The emission of the trajectory after each time step t is a particular unspecified function
f : Xh → X of the current history with length h, where X is the set of all possible
emissions. In the following, f is referred to as ‘emission function’. With each time step,
the history updates according to the current emission.

The Fibonacci sequence, for example, can be formalized as the emission function
f(xt) = f(xt−2) + f(xt−1), where t ≥ 2, x0 = 0, and x1 = 1. This function takes the two
previous elements (i.e. h = 2) and returns their sum.
With an initial trajectory of [x0, x1] = [0, 1], the emission function determines all

further emissions starting from t = 2 up to infinity. Each element at index t is determined
recursively.

xt =

t−1∑
n=t−2

xn = xt−2 + xt−1

[x0, x1, x2, x3, x4, x5, ...] = [0, 1, 1, 2, 3, 5, ...]

In the case of the Fibonacci sequence, the emission function is constant over time.
Therefore, the resulting trajectory is static.

16.1.4. Dynamic Trajectories

In a dynamic trajectory, f can change with t.

Definition 2. Dynamic trajectories are sequences, where the emission function f changes
erratically: The current emission function depends only the current time step t.

xt = f
(
t, [ xn ]t−1

n=t−h
)

2Elsewhere, histories are also referred to as ‘contexts’. Here, this term is already occupied by Dreyfus.
Emissions are also described as observable. To use this term in the simulation of a mental model,
however, suggests that the simulated system itself can perceive them—which is not the case.
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For the sake of simplicity, only dynamic trajectories with a history length of h = 1

are considered. As a consequence, the emission function in definition 2 can be simplified
according to equation (16.1).

xt = f(t, xt−1) = ft(xt−1) (16.1)

The emission function f at time t determines the state ft of a dynamic system.
The dynamic trajectory in equation (16.1) is not influenced by any other system (i.e.

it is not controlled). However, reality influences cognitive systems in virtue of sensor
emissions and cognitive systems influence reality in virtue of motor emissions. In fact,
both are so closely connected that their individual trajectories are in a coupling.

Unities are considered as coupled “whenever the conduct of two or more unities is such
that the conduct of each one is a function of the conduct of the others” (Maturana 1980,
p. 136).
Equation (16.2) describes the emissions in the dynamic trajectories of an agent that

simulates a cognitive system in state at and its environment that simulates external
reality in state et after each time step.

st = et(mt−1) mt = at(st−1) (16.2)

The environment’s current sensor emission is st ∈ sensor, the agent’s current motor
emission is mt ∈ motor, the current state of the environment is et : motor→ sensor, and
the current state of the agent is at : sensor→ motor. None of both systems has access to
the other’s state, both merely receive its emissions.
This formalisation provides a very general way to conceive of discrete sequences that

influence one another. Changes in state are not bound to a fixed probability distribution
but erratic. To assume more regularity in the source of sensor emissions from external
reality would mean to underestimate the problem that cognitive system have to solve
when generating mental representations.

16.2. Formalising Mental Models

This section presents a formalisation for mental models that is based in the subjective
conception of mental representation from section 3.1. This conception has been extended
semiotically in chapter 13. A formal semiotic conception of mental representation can
serve as a foundation to describe mental models as semiotic models.

Figure 16.1 illustrates the three semiotic components in subjective mental representation
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Figure 16.1.: The Directions of Causation in a Mental Representation.

from figure 13.1 on page 96 in more detail. The relations among these components are
set in italics.3 The cognitive processes that establish these relations are set in capitals.
The shape is a phenomenal appearance at the current level, the referent is a linear

transition between shapes of the level below, and content is a structural relation among
the shapes from the level below. Roughly speaking, content is what an external referent
means, shape is how this meaning appears, and the referent is what is mentally represented
by the cognitive system.
The relation between phenomenal shape and intentional content defines a feeling

according to section 13.2.1, the relation between content and referent defines a fact
according to section 13.2.2, and the mediated relation between referent and shape defines
a thought according to section 13.2.3.

The process of recognition takes a referent and provides a fact, the process of perception
takes shape or content and provides a feeling, and the process of grounding takes a referent
and provides a thought.
Content also establishes an expectation relation through the cognitive process of pre-

diction. In figure 16.1, expectation and prediction are only hinted at in the structure of
content.

3The direction of causation is inverse to the direction of fit in figure 13.1: the mind can only fit the
world if the world had a previous causal influence on the mind.
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According to section 15.5, information in mental models is primarily processed at
the current level and propagated into more abstract layers only when necessary. With
figure 16.1, local information processing can be identified as prediction, the propagation
upwards can be identified as recognition, and the propagation downwards can be identified
as perception.4

The ternary relation across adjacent levels enables to formalise a complete mental
model. This mental model enables to eventually predict the emissions in a dynamic
trajectory according to definition 2 on page 121.

16.2.1. Basic Definitions

Three definitions are fundamental to our formalisation of models and their representations.
These definitions follow from chapter 13 and they concern shapes, referents, and content.

According to the direction of causation in figure 16.1, any influence on mental models
must initially start from external referents.

Definition 3. Every referent r ∈ referentsl is a 2-tuple r ⊆ Cl × Sl that consists of
elements from the set of all transition conditions Cl and consequence shapes Sl, where
l ≥ 0.

Before describing transition conditions in more detail, the semiotic components of
mental representations are introduced. The next component is the content.

Deterministic content m ∈ content is a functional relation m : Cl → S from transition
conditions to consequence shapes. If m(a) = b, for example, then content m presents the
referent r = 〈a, b〉.
However, content can be easily generalised with a frequentist (e.g. axiomatic) inter-

pretation of probability (Eells 1999; Cheeseman 2001). The transition frequencies in
probabilistic content enable to infer individual transition probabilities.

Definition 4. Every probabilistic content is a function from transition conditions and
consequence shapes to transition frequencies m : cl × Sl → N∗, where l ≥ 0.
The probability of referent r = 〈c, s〉 according to probabilistic content m ∈ contentl

4Notice the difference to sense-model-plan-act architectures which conceive of all ‘upwards’ processing as
perception and all ‘downwards’ processing as action. According to embodied cognition (see especially
chapters 7 and 8), however, agent and environment are fundamentally coupled. All cognitive processes
therefore always already operate on combined sensorimotor activations. The next section describes
this in more detail.
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is p(m, c, s).

p : contentl × Cl × Sl → [0, 1] ⊆ R

〈m, c, s〉 7→ α+m(c, s)∑S
s′ α+m(c, s′)

The frequency of the given referent as well as the sum of all frequencies are modified by
additive smoothing. The pseudocount α ∈ R≥0 determines a Dirichlet distribution that
defines the expected initial probabilities (Chen and Goodman 1996). If the denominator
is zero, the probability of the referent is 1.

Whether probabilistic content presents a referent depends on the threshold σ ∈ [0, 1]: if
p(m, c, s) ≥ σ, then content m presents referent 〈c, s〉. In this case, the relation between
content m and referent r is a fact, denoted as fact(r, m).
If the consequence shape in referent r = 〈c, s〉 is the most probable successor of its

transition condition s = argmaxa∈S p(m, c, a), then, the shape is expected, denoted as
expectation(m, c, a ).
Eventually, shapes are defined as follows.

Definition 5. Every shape s ∈ S is the appearance of one unique content. Both are in
an injective relation feeling : S ↔ content, where content is the union of the sets
contentl and S is the union of the sets Sl at all l ≥ 1, such that

∀s0, s1 ∈ S. feeling(s0) = feeling(s1)⇒ s0 = s1.

If a content m presents a particular referent r, then the shape s of this content re-presents
this referent, denoted as thought(r, s).

According to figure 16.1, feelings are a relation between phenomenal shape and in-
tentional content. They can be considered as indices that connect adjacent levels in a
semiotic model by indicating content at one level with a more abstract shape at the level
above. The structure of each semiotic model is a partially ordered set of content.
Facts are a relation between referent and content. They can be considered as icons

that present the structure of external reality.
Thoughts, eventually, are a relation between referent and shape. They can be considered

as symbols that re-present an external referent.

16.2.2. Definition of Semiotic Models

These basic definitions enable to define the structure of a semiotic model.
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Definition 6. The structure of a semiotic model is a sequence Λ : N∗ → { Il | l ∈
N∗ ∧ Il ⊆ feeling } that determines a set Il for each level of abstraction l such that
Λ(l) = Il.

Each of these sets, in turn, determines contentl at its own level and Sl+1 at the level
above, such that Sl+1 =

{
s | 〈s,m〉 ∈ Il

}
and contentl =

{
m | 〈s,m〉 ∈ Il

}
. The sets

Sl and contentl are unique to each level.

As partially observable models, semiotic models are also in a particular state.

Definition 7. The state of the semiotic model Λ is a sequence λ : N∗ → S that
determines the current content at level l in virtue of its shape at l+ 1, such that λ(l) = s

where s ∈ Sl+1, m ∈ contentl, and feeling(s, m).

The state of a semiotic model represents the state of the described system. Each index
in the state provides content for this level of the model.
This leaves the definition of transition conditions. To establish this, consider what

happens if a referent is received at level l that is not re-presented by λ(l): this level of
the state has to transition to a new shape that does re-present this referent.

λ̂(l)← argmax
s∈Sl

p
(
m′, λ(l), s

)
, where feeling(λ(l + 1), m’) (16.3)

Equation (16.3) shows that the shape λ̂(l) that is expected to re-present the unknown
referent r is selected according to the current content m′ at the level above.
If thought(r, λ̂(l)), then λ(l) ← λ̂(l). If ¬thought(r, λ̂(l)), however, then the one

shape is selected whose content the referent is most probable according to equation (16.4).

λ̂(l)← argmax
s′∈Sl

p(m, c, s), where feeling(s’, m) (16.4)

Again, if thought(r, λ̂(l)), then λ(l)← λ̂(l). If ¬thought(r, λ̂(l)) at this point, however,
then the model simply cannot describe the referent.
The following sensible transition conditions can be inferred from this.

Definition 8. Every transition condition c ∈ Cl at level l ≥ 1 is a 2-tuple that consists
of a referent r ∈ referentsl and a shape s′ ∈ Sl+1 that does not re-present this referent.

Cl ⊆
{
〈s′, r〉

}
, where ¬thought(r, s′)

Both, referent and inappropriate re-presentation at this level, are the reason for a
transition and, together, they are therefore a condition that enables to predict a new
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shape that may provide an appropriate content for this referent in the future.

16.3. Formalising the Sensorimotor Interface

To describe the generation of a semiotic model according to definition 6 on page 126
requires to determine the referents according to definition 3 on page 124. This, in turn,
requires to determine transition conditions and consequence shapes in a coupled dynamic
trajectory according to equation (16.2) on page 122.
The given definition 8 of transition conditions and definition 5 of consequence shapes

both exclude the base level l = 0 of the semiotic model. The reason is that, at base level,
both depend on the particular types of systems.

In the following chapter, example models are presented according to equation (16.2) on
page 122. In these examples, the base transition conditions and consequence shapes are
orientations of mechanical components in a centrifugal governor.

In the case of a cognitive system, the base transition condition is the last sensorimotor
activation and the base consequence shape is the current sensor activation. Together,
both elements determine the referents of cognitive systems. These referents couple system
and reality.

C0 ⊆ sensor ×motor, S0 ⊆ sensor, R0 ⊆ C0 × S0

ct = 〈st−1,mt−1〉, s′t = st, rt = 〈ct, s′t〉 (16.5)

Equation (16.5) determines the current transition condition ct as the the last sensorimotor
activation, the according consequence shape s′t as the current sensor activation, and the
current referent rt accordingly.
Following from this, the coupled dynamic trajectory of cognitive system and external

reality can be determined eventually as follows.

st = et(mt−1, st−1) mt = at(st−1,mt−1) (16.6)

In the part after the following chapter, a computational cognitive model for the generation
of mental representations is developed specifically according to equation (16.6).
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The previous chapter provides a formalisation of semiotic models. This chapter uses this
formalisation to model a fully observable and a partially observable system. It can be
seen that, in the former case, semiotic models regress to simple Markov processes. The
emissions in the second case depend on states that change hidden from any observer.
Here, the differences between Markov models and semiotic models show most clearly.
Figure 17.1 shows a centrifugal governor. Its function is to stabilise the speed of a

steam engine. The right side of the figure depicts the throttle valve. The left side depicts
the flywheel with two connected arms. The hinges of the flywheel arms are mechanically
coupled to the throttle valve.
Opening the throttle valve increases the steam throughput. With increased steam

throughput, the flywheel rotates faster and the resulting centrifugal forces lift its arms.
This effectively increases the angle between the arms and their axis of rotation. The
change is mechanically transferred onto the throttle valve.
The mechanical connection establishes a negative feedback between the angle of the

flywheel arms and the opening of the steam valve. If the angle between arms and axis
increases, then the opening of the valve decreases and vice versa.
Due to friction and inertia, mutual influences continually decrease as both angles

converge towards a stable attractor point, independent from their initial values.

Figure 17.1.: A Centrifugal Governor (Routledge 1900, p. 6)
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Time t Flywheel wt Valve vt

1 50.00 80.00
2 12.00 48.00
3 40.50 72.00
4 19.12 54.00
5 35.16 67.50
6 23.13 57.38
7 32.15 64.97
8 25.39 59.27
9 30.46 63.54

10 26.66 60.34
11 29.51 62.74
12 27.37 60.94
13 28.97 62.29
14 27.77 61.28
15 28.67 62.04
16 28.00 61.47
17 28.50 61.90
18 28.12 61.58
19 28.41 61.82
20 28.19 61.64

Table 17.1.: Data from a Centrifugal Governor.

Because of its two coupled subsystems, the centrifugal governor is a popular analogy
to describe the dynamic interaction between cognitive system and external reality. The
flywheel ‘controls’ the valve opening just like an agent ‘controls’ its environment. One
subsystem co-determines the other.
Usually embodied cognition pursues an approach to cognitive modelling according to

this analogy (see, for example, van Gelder 1995). In the following, the limits of this
analogy are shown.

17.1. Modelling Statically Coupled Systems

Consider the emissions of a centrifugal governor in table 17.1. The emission of the flywheel
after time step t is denoted as wt and the emission of the valve at the same time is denoted
as vt.1

Two static emission functions (i.e. Markov decision processes) can be formalised

1The source code used to generate this data can be found in appendix A on page 218.
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Figure 17.2.: The Coupled Trajectories in a Centrifugal Governor.

according to equation (16.2) on page 122 to describe the coupled trajectories of flywheel
and valve. For a model of the flywheel, the transition conditions C are the valve’s
emissions vt and the consequence shapes S are the emissions that it receives from the
flywheel after the next time step wt+1. For a model of the valve, transition conditions
and consequence shapes are inverted.

Both trajectories can be described by the coupled emission functions in equations (17.1)
and (17.2).2

mw(vt) = wt+1 = −0.89vt + 83.25 (17.1)

mv(wt) = vt+1 = −0.63wt + 79.58 (17.2)

The values of the original trajectories and the interpolated approximations are illustrated
in figure 17.2. The attractor for both of these trajectories is somewhere close to v∞ ≈ 61.7

and w∞ ≈ 28.3.
With equation (17.1) we have a model for the flywheel and with equation (17.2) we have

a model for the valve. The individual models of both subsystems can be incorporated
into the model of a statically coupled trajectory mcg to describe the whole centrifugal
governor.

mcg(wt, vt) = 〈wt+1, vt+1〉 =
〈
mw(vt),mv(wt)

〉
(17.3)

2The approximations have been obtained by simple linear regression.
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Figure 17.3.: A Centrifugal Governor and its Simulation.

Equation (17.3) describes the whole centrifugal governor as a coupling of two individual
subsystems. Each transition condition in this new model is a tuple that couples transition
conditions from each of the previous models and each consequence shape is a tuple that
couples their respective consequence shapes.
The models for these subsystems are mutually dependant. A composite model that

incorporates these dependencies, however, is independent from another system. This
enables the autonomous simulation of a centrifugal governor, starting from an arbitrary
initial state.

Figure 17.3 shows that data that has been generated by a simulation starting from the
same initial state develops almost identical to the trajectory of the original centrifugal
governor.3 The complete model captures the negative feedback that characterises the
centrifugal governor. Therefore, it can be considered to be an appropriate description.4

17.2. Controlling Erratic Systems

Recall that the flywheel of the centrifugal governor is considered analogous to a cognitive
system and that the valve is considered analogous to external reality. Now assume that,
every once in a while, the steam valve shuts completely and remains stuck.
This occurs without warning and for an indefinite amount of time. After the valve

releases, the centrifugal governor resumes normal operation just as before. How can this

3For the differences between both trajectories, compare table 17.1 to table C.1 in appendix C.
4The source code for the simulation can be found in appendix B on page 219.
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erratic behaviour be integrated into a model?

mv(wt) = vt+1 = −0.63wt + 79.58 (17.4)

m′v(wt) = vt+1 = 0 (17.5)

Equation (17.4) describes the valve in its functional state and equation (17.5) describes a
defunct valve that remains shut over an extended period of time. As a consequence, the
orientation of the flywheel remains constant as well, although its emission function mw

from equation (17.1) on page 130 has not changed.
A comprehensive model of the erratic valve has to cover defunct as well as functional

behaviour. Sequences of emissions that have been obtained during one type of behaviour,
however, are not covered by a model of the other.
An appropriate model of the valve needs to switch between both subordinate models

for the individual behaviours as soon as they occur. Both low-level models need to to be
incorporated into a more general model such that each individual model can serve as the
content for a representation of one particular kind of behaviour.

The erratic valve is a dynamic system because it emits a dynamic trajectory. Each
of its behaviours can be considered as an individual emission function. Changes in this
emission function, in turn, imply a change in its state. An appropriate model for the
erratic valve, therefore, requires a state as well.

17.3. Modelling Dynamically Coupled Systems

A semiotic model for an erratic steam valve can be inferred from these definitions.
First, this requires the set of base indices I0. In our case, this set consists of the

emissions of the valve. These emissions are values from R≥0 that present the opening
degree of the valve.5

Second, the indices in I1 must be determined. These indices are the models mv from
equation (17.2) for the functional state and m′v from equation (17.5) for the defunct state.
For simplicities sake, their shapes are selected according to their denotation as ‘mw’ and
‘m′w’.

To describe the possible transitions between the shapes of these indices requires at least
one more index 〈‘m2’,m2〉 ∈ I2. The content m2 of this index is a functional relation
from C2 to S2.

5Each element in R has a particular shape and a particular content according to our definition of the
indices at each level in definition 6 on page 126.
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The transition conditions in C2 relate shapes from S2 with those referents from R1 that
are not represented by them. The referents in R1 are tuples from C1 × S1.

Like in the level above, the transition conditions in C1 are tuples that consist of shapes
from S1 and referents from R0 that are not represented by them. The second element in
the tuples from R1 are those shapes from S1 that do present these referents.

To cover all possible referents, m2 can be defined according to equation (17.6).

m2 =
{ 〈
〈s′, r〉, s

〉
| ¬thought(r, s’) ∧ thought(r, s), 〈s′, r〉 ∈ C2, s ∈ S2

}
(17.6)

From the indices at each level, a semiotic model Λ for the erratic valve can be determined
with equation (17.7).

Λ = [I0, I1, I2] =

=
[
R≥0,

{
〈‘mv’,mv〉, 〈‘m′v’ ,m′v〉

}
,
{
〈‘m2’,m2〉

}]
(17.7)

The state λ of the model can be defined according to the initial orientation of the valve
in the real centrifugal governor and its initial behaviour (i.e. functional).

λ = [‘80’, ‘mv’, ‘m2’]

The model for the erratic valve in equation (17.7) describes a dynamic trajectory that
changes over time. It covers this dynamicity as soon as it occurs.

In contrast to the model in equation (17.2), the semiotic model in equation (17.7) also
features discrete representations similar to the representations in a mental model.
The semiotic model describes the valve in a coupling with the flywheel but the model

itself is also coupled to the real valve. It reacts to the system’s emissions by changing its
own state according to section 16.2.2.

17.4. Centrifugal Governors and Cognitive Systems

Let us revisit the initial analogy from the introduction to this chapter: a centrifugal
governor is helpful to cognitive modelling because it can serve as an analogy for what
cognitive systems do with their environment. The flywheel exerts control over the valve
just like the cognitive system exerts control over reality. Several points occur under the
impression of this chapter.
Firstly, the valve controls the flywheel no more than the flywheel controls the valve.

Really, it appears more to be a matter of perspective who controls whom.
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Secondly, the flywheel can be described individually. However, it cannot be described
independent from the valve. Transferred to cognitive modelling, this supports the emphasis
of embodied cognition on the embedding of the system’s body into a physical reality.
Just as the flywheel cannot carry out its controlling function without a steam valve,

the feedback of which is to be controlled in the first place, systems cannot be cognitive
without the feedback of an erratic environment.

According to Maturana, van Gelder, Wilson, and various others, cognitive systems are
more or less coupled with external reality. The centrifugal governor provides an analogy
to illustrate the immediacy of such a causal influence.
Developing a model of the whole centrifugal governor can show parts of what cog-

nitive systems usually do when they generate their own mental model of reality. Even
more importantly, embodied cognition suggests that the intentional content of mental
representations is coupled with external reality similar to how flywheel and valve are
coupled.

However, the analogy between valve and cognitive system does not extend to the mental
model of a cognitive system. The flywheel does not feature a model of the valve in the
same way that cognitive systems feature a model of their environment. The models in
the previous section are merely models to us, not to the flywheel itself.

Nowhere in the functional centrifugal governor are there representations like the mental
representations of reality we experience to have ourselves. A possible explanation is
that the coupled trajectories of flywheel and valve are static. A single emission function
can describe the negative feedback between both systems. To predict this interaction,
representations are just not necessary.
Due to the lack of individual representations for different behaviours, the flywheel is

unable to react to the valve in its defunct state. This shows in the simple fact that a
valve with erratic behaviour causes the whole centrifugal governor to become inoperative.
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This part describes mental models as semiotic models. To achieve this, first, the general
hierarchical structure of mental models is presented. Then the representations in a mental
model are described as well as the relations among them.

The type of system that a mental model is supposed to describe is formalised as emitters
of dynamically coupled trajectories. Cognitive systems generate their mental model from
such a trajectory that is emitted by the environment and coupled to the system’s own
dynamic trajectory. The basic emissions in both trajectories are identified as sensorimotor
activations at the physical border between cognitive system and external reality.

The two subsystems of the centrifugal governor are a popular analogy in embodied
cognition to describe the reactive interaction between cognitive systems and external
reality. However, the analogy ends when mental models are considered.

A modification to the centrifugal governor is conceived which makes it more similar to
the coupled system of cognitive system and external reality. The state of a model has to
be updated to provide predictions that consider the current state of the modelled system.
A dynamic change of state in the valve makes clear the need for ‘stateful’ mental models.

A type of semiotic model is developed that enables to predict emissions despite
this change. The predictions of partially observable models—including semiotic mod-
els—depend on this state.

The state of a semiotic model enables a cognitive model to describe the belief state of a
cognitive system more appropriately than the states of other types of partially observable
models.
Where the states of other models represent by definition unobservable states of the

system they describe, the state of a semiotic model is constructed only from observable
emissions of the other system.

135



Part V.

Simulating the Generation of
Mental Models

136



19. Introduction to Cognitive Models

Different types of models describe different types of aspects in another system. Algorithms
are models that describe a system in virtue of its emissions—not, for example, in virtue
of its nature. They provide instructions on how the emissions of the system can be
generated.
Algorithms can be implemented as programmes. By sequentially executing each in-

dividual instruction in this programme, a computational interpreter can generate an
instance that mimics the original system with respect to its emissions. In the case of
algorithmic cognitive models, these emissions consist of the system’s behavioural data
(see the introduction to chapter 15).

The individual actions that make up behaviour can also be considered in a wider sense
to include the cognitive manipulation of mental representations (see section 3.3). As a
consequence, an algorithm can be instantiated to simulate cognition in virtue of subjective
experience as emissions to first-person-perspective. This instance is a computational
process which, in turn, is a temporal sequence of physical states in a computer system.
Accordingly, four physical entities are involved in the computational simulation of a

cognitive system: 1) the real system (i.e. a cognitive system), 2) the algorithm that
describes the behaviour of this system (i.e. a cognitive model), 3) the programme that
implements this algorithm in a particular syntax (i.e. a programme for the simulation of
a cognitive system), 4) and an instance of this programme (i.e. the physical simulation of
a cognitive system).

Algorithm and syntax determine all the variations of a particular programme and vice
versa. In the following, the difference between algorithm and programme is therefore
omitted. Three physical entities remain.

A good algorithm describes the system’s behaviour appropriately and comprehensively.
A good simulation realises only and exactly behaviour as it is described by this model.
Goods simulations, therefore, cannot be distinguished from the real system with regard
to their algorithmic model.

If some thing is designed according to a model for X, then this thing is an X according
to the model. If differences begin to show between the artefact and X, then these
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differences can be incorporated into the model to ensure that the model still describes
the artefact as an X.

19.1. Computational Simulations of Cognition

A computational simulation of cognition has various benefits. Among the most important
ones are explicitness, workability, empirical verifiability, and the ability to evaluate
cognitive models.
Firstly, the strict formal requirements of programming languages require models to

be explicit. This allows to determine inconsistencies early on. The resolution of these
inconsistencies can improve a model without even comparing its instance to the behaviour
of a real cognitive system.
Secondly, computational simulations are workable. They can be applied to various

tasks in different environments. They can also be plugged into sensorimotor interfaces
that emulate a variety of different bodies.

Thirdly, simulations are empirically verifiable. Computational simulations supplement
the empirical methods of cognitive sciences in general (Schmid and Kindsmüller 1996,
p. 24) and the empirical methods of psychology in particular (Strube 1996a, p. 317; Strube
1996b, p. 408).

Fourthly, cognitive models can be evaluated by computational simulations. If the
simulation deviates from the behaviour of a real cognitive system, then the underlying
model is in need of improvement or revision. This is the case, for example, if a cognitive
system and its simulation have a similar task in a similar environment but show significantly
different behaviour. (Schultheis 2013, p. 101)
Most important in our case, however, is that computational simulations can not only

support or weaken computational models of observable behaviour. Simulations also
provide observable simulations of mental processes that are prior to any interaction with
the environment. Models can be evaluated by how well their instances imitate mental
processes that can only be experienced by oneself.
Take a chess computer during the evaluation of the board position. Its internal

processes are crucially different from the mental processes that humans experience in
the same situation. The chess programme, therefore, may be good at playing chess but
its underlying algorithm is not a good cognitive model of human chess players. (Strube
1996b, p. 407; Strube 1996c, pp. 546–547; Schultheis 2013, p. 101)
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19.2. Convergence in Artificial General Intelligence

One intention behind the simulation of cognitive processes is to solve real-world problems.
This goal is approached from many different directions: pattern recognition, knowledge
representation, and natural language processing—only to mention a few.

A popular contemporary view is that these different fields will eventually converge into
artificial general intelligence. According to this assumption, the vast array of cognitive
abilities only appears heterogeneous on the surface.
Actually, however, they are supposed to be merely different manifestations of the

same underlying principle. Once this principle can be described and simulated with a
computational system, diverse cognitive abilities emerge from it.
This view is consolidated neurologically by the equipotentiality of neural tissue. Equi-

potentiality is the property of functional parts of the brain (e.g. individual neurons or
neural columns) to compensate for any other functional part that might be incapacitated.

This property suggests that all the subsystems of the brain implement the same basic
cognitive processes which underlie the various manifestations of intelligence. Once these
processes can be described, in principle, computational systems could be programmed to
implement them as well. (Mountcastle 1978)
Identifying the equipotential processes in original intelligence by integrating diverse

approaches to artificial intelligence is problematic. The perspectives, approaches, and
goals are way too numerous to break them down into a smallest, but still meaningful,
common denominator.
Instead, it appears to be more promising for the simulation of original intelligence to

start from basic cognitive processes as they are experienced by real cognitive systems (see,
for example, prediction, perception, recognition, and grounding in the introduction to
section 16.2).

19.3. Pragmatic Artificial Intelligence

As long as an essential difference is assumed between real cognitive systems and their
simulations, research will attempt to pinpoint this difference before it starts to realise
workable systems. If this difference is assumed to be intentionality, however, then workable
systems are delayed indefinitely: there is no observable difference between intentional and
non-intentional systems.
Could intentional content be observed from an external perspective, it would already

be crucially different from the intentional content in a real cognitive system. According to
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pragmatic artificial intelligence, the non-verifiability of intentionality in any other system
is sufficient to accept that artificial systems simulation and real cognitive system can
both be equal instances of the same cognitive model.

If intentionality cannot be observed, however, how can a simulation for the generation
of intentional content be evaluated? To simply accept the simulation as cognitive would
beg the question what it really is that makes it cognitive and, eventually, this would mean
to make the same mistake as strong artificial intelligence.

From the stance of pragmatic artificial intelligence, a successful simulation of cognition
depends neither on the realising material (e.g. computational or biological) nor on its
particular actions in an environment. It rather depends 1) on whether the simulation is
instantiated in reality or in a simulation of reality and 2) on whether the model enables
its system to recognise parts of the environment.

The first condition embraces Searle because the originality of intentional content depends
on the origin of the system’s experience. Only external, immediately imperceivable reality
can provide the ground for original content. In a simulated environment, in contrast, all
of the system’s content must be derived from content in the mind of the simulation’s
designer (see section 12.1).
The second condition contradicts Searle because it assumes that simulations are able

to recognise external referents in the same way that real cognitive systems do: with
original intentional content. Searle rejects the possibility that computational systems can
associate intentional content to anything.

Comparably strong conditions can hardly be inferred from the stance of strong artificial
intelligence or weak artificial intelligence (see section 12.3). Weak artificial intelligence
only offers descriptions of cognitive systems. It provides content to the observer but not
to the simulating system.
Strong artificial intelligence, on the other hand, completely ignores the particular

model behind a simulation. Instead, it pulls back to a behaviourist position from which
everything that ‘acts cognitively’ is also supposed to be cognitive.
Weak artificial intelligence lacks the ambition and strong artificial intelligence the

perseverance necessary to simulate the content of real mental representations. This
shortcoming contributed immensely to the popularity of the Chinese room argument but
it also summons severe practical problems (see chapter 2).
To cognitive systems that control non-human bodies, many human concepts are fun-

damentally irrelevant. A wheeled robot whose mental representations have the content
of a two-legged human will have critical problems, for example, when interacting with
staircases.
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Pragmatic artificial intelligence emphasises the need to determine to whom a shape is
associated with content and, therefore, it pays respect to these problems. Shapes that are
only interpreted by the observer can merely be part of a description. Shapes that are
interpreted by their own system, however, can be subjective representations with content
that is intrinsic to their own system. If these shapes can only be interpreted by their own
system, then the resulting content is necessarily original.

19.4. Summary

Mental representations make permanent objects from elusive basic perception. A funda-
mental explanation for intentional content must therefore start by accepting subjective
experience. This experience can only be accessed by the described system—be it biological
or computational.
A comprehensive cognitive model must also describe the mental model in a cognitive

system. The shapes in a model must have content to an observer. Otherwise, the model
would not describe anything to anyone.

In a simulation of pragmatic artificial intelligence, however, the external content that
an observer associates with simulated mental representations is considered secondary
to an interpretation by the system itself. The system’s content must be considered
epistemologically prior to content in a description of this system—just like it is the case
with real cognitive systems.

An algorithmic cognitive model can describe the generation of this content as the
procedural generation of a semiotic model. Such a cognitive model for the generation of
mental models concerns the cognitive sciences as well as machine learning.

It concerns the cognitive sciences because it is cognitively justified. Cognitive plausibility
is crucial to the processes that are described by cognitive models. Plausibility can
be achieved in virtue of theories that provide explanations for these processes (e.g.
phenomenology).
The cognitive model also concerns machine learning because the computational gen-

eration of a semiotic model is an automatic acquisition of knowledge. Computational
procedures can be implemented and instantiated as machine learning processes to simulate
the cognitive processes responsible for knowledge acquisition.

A computational simulation of symbol grounding requires both: an appropriate theoret-
ical foundation that enables to interpret the algorithm as a model for cognitive processes
as well as an empiric analysis of the computational processes that it instantiates. The
first half of this work provides the former, the second half provides the latter.
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The field of machine learning is concerned with the generation of data structures that
provide knowledge to computational systems. According to Tom Mitchell, “[a] computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P , if its performance at tasks in T , as measured by P , improves
with experience E.” (Mitchell 1997, p. 2)1

Experience is the information acquired during processing a particular task. Proficiency
in this task shows in an increase in performance. This definition enables the empirical
analysis and qualitative comparison of different learning algorithms.

A checkers learning programme, for example, has the task to win games of checkers, its
performance can be measured by the number of games won, and it can obtain experience
by playing checkers. The instances of different algorithms can be analysed empirically by
putting them up against the same opponents and by comparing the number of games
they won.
What is the available information, task, and performance measure in a simulation for

the generation of a mental model? The available information is sensor and motor data
that results from its system’s interaction with an environment (see section 16.3). The
task is the generation of a model for this environment and the performance measure is
the system’s performance in predicting emissions of this environment.
The various algorithmic approaches to generate knowledge are commonly classified

into three different types: unsupervised learning, supervised learning, and reinforcement
learning. In this part, an overview over these three classical types of machine learning.
The next part shows that the learning of a semiotic model concerns all of them. Due to
the fact that the sequentiality of information is an important constraint in a simulation
for the generation of mental representations, different cases of sample availability are
presented as well.

1To distinguish experience and knowledge according to Mitchell from their phenomenological interpret-
ation, Mitchell’s conception of experience is referred to as ‘samples’ and to the phenomenological
conception of knowledge as ‘content’.
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20.1. Unsupervised Learning

Unsupervised learning is the autonomous generalisation of input. The input in unsupervised
learning can be any sort of singular, structural, nominal, or rational data.
Generalisation is performed by any procedure that groups inputs. Labels that are

manually assigned to these groups are usually considered to be more abstract than their
according input samples. Abstraction is the representation of a group of input samples by
the group’s respective label.
Unsupervised learning procedures infer properties from each input that enable to

assign this input to a group. These properties describe the input with previously un-
known information that is relative to all available inputs (e.g. frequency, redundancy, or
selectivity).

Particular tasks in unsupervised learning include structural classification (i.e. clustering),
fraud detection (i.e. the identification of anomalies), or the elimination of redundancies
(i.e. data compression). These tasks are not mutually exclusive but rather different
perspectives on the same type of generalisation.

Consider, for example, a procedure that sorts a bag of fruits into groups of colour. The
colour of each fruit is the relevant property and the name of this colour is a label that
serves as an abstract representation for each individual fruit in this group.

It might appear as though this procedure does not need to infer anything. After all the
fruits prominently feature a particular colour already. Consider, however, that it must be
decided, for example, whether oranges receive the same label as apples (i.e. ‘red’), the
same label as lemons (i.e. ‘yellow’), or their very own label (i.e. ‘orange’). This decision
must be inferred in relation to all colours and it is far from obvious what the best choice
is in a particular setting.
Generalisation properties can be inferred by feature selection (i.e. ignoring particular

properties of the input), by instance selection (i.e. ignoring some inputs completely),
by feature discretisation (i.e. the quantification of continuous inputs), and by feature
construction (i.e. the generation of new properties). (Saitta and Zucker 2013, pp. 278–290,
concerning supervised learning)

As soon as the relevant colours have been decided upon, each fruit can be assigned to
its according cluster. This enables to identify anomalous fruits, as well as to generate a
compressed description of the bag’s original contents from the number of fruits in each
group—in contrast to an extensive enumeration of each individual fruit.
The performance of unsupervised learning procedures a relative matter. Although all

methods perform some kind of generalisation, one might outperform the other at data
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compression while being rather inappropriate for fraud detection. To account for this, a
quantitative comparison of different procedures in unsupervised learning always requires
to define a particular measure of performance.

20.2. Supervised Learning

Supervised learning is the instructed generalisation of input. Instructions are provided in
the form of examples. Each example is a tuple of input and target data. The target is a
label for the input.
The supervised learning of numeric rational targets is regression. Learning nominal

targets is classification. All forms of regression can be described as the classification
of input into discrete numeric intervals but not all forms of classification can also be
described as a regression of input into rational targets.

Examples enable to infer properties that generalise over all inputs with the same target
label. The goal of supervised learning is to infer properties that apply not only to the
example inputs but to unseen inputs as well.

A trained supervised learning system receives input, recognises its generalisation prop-
erties, and outputs the target label that correlated with this property during instruction.
Consider observing several groups of fruits. The example data in this case is a set of

tuples that consist of a particular fruit (i.e. the input) and a colour label for the group to
which the fruit is assigned (i.e. the target).

Supervised learning is to infer one or more properties that 1) enable to reproduce the
example grouping as best as possible and 2) enable to group unknown inputs appropriately.

Supervised learning has been successfully applied to highly structured input data, such
as digital images (e.g. object recognition), as well as strongly related singular data, such
as medical records (e.g. decision trees).

20.2.1. Bias and Variance

The success of a supervised learning system is evaluated with its error on a particular set
of examples. The error is the difference between the actual target values and the output
values generated by the system.

Supervised learning systems usually reduce the error during learning with each individual
example and with each iteration over all examples—otherwise they do not learn anything.
An obvious source for error is noise in the data set. Noise manifests, for example, in

non-functional example sets where the same input has more than one target.
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Even if the example set is functional, however, there are two more causes for error.
One is the system’s bias and the other is variance in the set of examples.
Bias is the tendency of a learning system to choose one input property over another

given the same empiric evidence. A system that selects only one relevant property,
although the examples would support more than one, has a relatively strong bias. Systems
that select more properties have a relatively weak bias.
To consider all properties of the input as relevant for the target label makes a system

completely unbiased. An unbiased system, however, can only provide informed outputs
for input from the example set. To such a system, each previously unseen combination
of properties is a unique new input and, therefore, it provides no information on an
according target. (Mitchell 1990)

Completely unbiased systems learn examples ‘by heart’ and, therefore, do not generalise
at all.2 In general, all weakly biased systems tend to perform badly on unknown examples
because some bias is necessary for generalisation. The stronger the bias, however, the
greater the chance that a relevant property is not considered by the system.
The second reason for error is variance. It describes the diversity of inputs for each

target. The diversity of inputs determines the amount of bias necessary to minimise error.
For a small error under a strong bias, variance must be low. A strong bias only works
well on homogeneous data. For a small error under high variance, the bias must be weak.
With high input variance, there is often no choice but to learn ‘by heart’.

Consider examples of coloured shapes, in which all blue squares are in one group
and all red circles are in another. The inputs have a low variance in each group. Each
individual input property determines its target. Depending on whether the system is
biased towards colour or shape, new inputs (e.g. blue triangles or green circles) can be
assigned accordingly.
Now consider two other groups: one in which there are only red squares and blue

circles, and one in which there are only blue squares and red circles. With such an
example set, a strongly biased system cannot determine a single property as relevant for
the target groups. An unbiased system would be able to correctly reproduce the example
set. However, this is paid for with the ability to generalise beyond these examples.

20.2.2. Generalisation Error and Overfitting

A weak bias enabled to minimise the error for the example set from which the system is
trained. But the goal is to train a system such that it produces little error for unknown

2Learning by heart is usually referred to as ‘overfitting’.
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input as well—the inputs in the examples are already labelled correctly after all.
Consider two example groupings of fruits. One is the training data from which properties

are inferred. The other is the test data, onto which the these properties are applied to
verify their ability to predict the expected labels.

The training error is the deviation of output from target in the training examples.
The test error is the according deviation in the test examples. The generalisation error,
eventually, is the test error minus the training error.
High training error is a sign for underfitting. This occurs in systems that are strongly

biased towards the wrong, or not enough, properties.
The more variant the data, the less biased a system must be to perform well. More

properties must be considered and so the chances increase that the system becomes
‘superstitious’ by assigning targets to the wrong (i.e. correlating but causally irrelevant)
properties.

High generalisation error is a sign for overfitting. To determine the generalisation error
requires separate training and test example sets. Overfitting occurs, for example, if the
training examples are less variant than the test examples.
Without independent and identically distributed examples in both sets, the test error

cannot provide any insight on how well the system generalises its input. Bots sets must
must not influence one another but both need to follow the same underlying dynamics.

Overfitting can also result from the consideration of too many properties. The system
must be biased enough to avoid an unintentional specialisation in only a particular subset
of all the relevant data (i.e. the training set). The ideal bias is determined by the variance
of the data at hand.

20.3. Reinforcement Learning

Reinforcement learning is the procedural discovery of goal-directed behaviour from ex-
perience. The experience of a reinforcement learning agent is a 3-tuple that consists of a
sensor emission from the environment st, the agent’s motor emission at as a response, and
the reward rt received from the environment as a response to this action. This exchange
is assumed to take place during one time step (i.e. in between t and t+ 1).

An experience could be, for example, the state of a chess board (i.e. sensor emission),
the move performed in this state (i.e. motor emission), and a reward depending on
whether a black, a white, or no chess piece has been captured after performing this move.
Systems can learn from this experience which action to perform during a particular sensor
perception to maximise their reward over time.
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Although reward is usually real-valued, goal-directed behaviour can be learnt from as
little as two binary reward values: the system receives low reward (i.e. punishment) until
the designated goal is achieved. As soon as the goal is achieved, it immediately receives
high reward during one time step.
The behaviour of an autonomous agent in its environment follows a particular action

policy. Policies can be better or worse suited to achieve a certain goal. With growing
experience, reinforcement learning agents change their policy to adapt to their environment
and reach their goals more efficiently.

The performance of a particular policy is determined in virtue of the cumulative reward
that the agent gathered from the environment in a fixed amount of time while following
this policy. This gives an implicit preference to more efficient policies that enable the
agent to achieve its goal faster, in case rdefault < 0.

Experience is determined by the dynamics between agent and environment. Their actual
sequence of interactions can be described by a hidden Markov model. The environment
of an agent that learns its own actions, however, must be described as decision processes
that couples the emissions of the environment to the emissions of the agent.

20.3.1. Exploration and Exploitation

To improve their action policy, reinforcement learning agents need to obtain new experi-
ences. They must find a trade-off between the exploration of their environment to learn
something new and the exploitation of previous experience.
More specifically, the dilemma is whether an agent should perform the best action it

already knows about or whether it should try to find a new action that might yield even
more reward in the long run.
A common approach to deal with this problem is a constant ε-greedy strategy. First,

a fixed threshold ε ∈ [0, 1] is selected. Before each action, a uniformly random value
from the same interval is drawn. If this value is below ε, the agent performs a uniformly
random action, otherwise it performs the action that it assumes to be the best.

Although there are many alternatives to a constant strategy (for an overview, see, for
example Takahashi et al. 2009, p. 243), this approach is rather attractive for evaluation
purposes. Its effects on the eventually accumulated reward can be determined easily
because, over time, the influence of ε-exploration approximates ε times the average reward
over all actions.
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20.3.2. Policy Learning

Given an appropriate exploration strategy, there are two general approaches to optimise
the policy of an agent towards maximal cumulative reward.
The first one is policy iteration: The agent selects a policy, executes it for a fixed

amount of time, and then compares the accumulated reward with the reward accumulated
during previously executed policies.
If policies are defined in a metric parameter space, classical optimisation (i.e. hill-

climbing procedures) can be applied. The problem with this approach is that the parameter
space (i.e. the number of policies) might be very large or even infinite.
The second general approach is value iteration. Here, policies are defined indirectly,

by the agent’s evaluation of actions under different circumstances. If the agent always
chooses the action that is evaluated best then the evaluation determines exactly one
policy.
Actions can be evaluated by the estimated cumulative reward that the agent expects

to receive after their execution (i.e. temporal difference value iteration). In tasks where
the immediate reward might be more important than future reward, the agent learns
to estimate the discounted cumulative reward. The discount is determined by a factor
γ ∈ [0, 1] which describes the decline of reward importance with each step into the future.3

The general procedure of value iteration algorithms is as follows: after each time step,
the agent explores or exploits the environment (i.e. it performs either a random action
or the one that is evaluated best). In the same instant, the evaluation of the last action
is adjusted according to the current reward and the evaluation of the current action,
discounted by γ.
Notice that, in contrast to usual supervised learning, in value iteration reinforcement

learning, training and test are simultaneous. The agent’s actions are an immediate test of
the learnt evaluation. In the same instant, the agent also trains its goal-directed action
selection by adjusting the evaluation of its last action.

20.4. On-line Learning

The data for machine learning systems comes in the form of samples. The samples for
unsupervised learning are inputs, the samples for supervised learning are examples, and
the samples for reinforcement learning are experiences.

3Inferring a policy via value iteration effectively translates reinforcement learning into the supervised
regression of discounted cumulative reward.
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Three general cases of sample availability can be distinguished. The first case is batch
learning, where the full data is randomly accessible to the learning system at all times.
The second case is active/semi-supervised learning, where individual samples are provided
by a teacher whenever considered necessary. The third case is on-line learning, where
individual samples become available in a stream of data over time.
The generation of a mental model is learning from a sensorimotor trajectory and,

therefore, a case of on-line learning. Unfortunately, the term ‘on-line learning’ has
at least three different meanings. On-line convex optimisation is one of them (see
section 16.1.2)—two more remain.

20.4.1. On-line and Offline Policies

The first meaning of ‘on-line learning’ is specific to reinforcement learning. Here, ‘on-
line learning’ means to learn the best policy including exploratory behaviour. This
understanding is applied, for example, by Shani (2007, pp. 35–44).
Consider, for example, an agent that moves alongside a cliff. An on-line policy makes

sure that the agent keeps its distance such that it is safe despite random exploratory
behaviour. An example for on-line policy learning is Sarsa-learning. (see footnote 3 in
Rummery and Niranjan 1994, p. 6; Sutton and Barto 1998, chapter 6.4)
‘Off-line learning’, in contrast, means to learn the best policy without considering

exploratory behaviour (i.e. an optimal policy). Such a policy might lead the agent much
closer alongside a cliff if this is in fact the shortest path from start to goal position. Off-
line policies enable the optimal exploitation of deterministic environments. An example for
off-line policy learning is Q-learning. (Watkins 1989; Sutton and Barto 1998, chapter 6.5)

In general, on-line policy learning appears cognitively more plausible. Cognitive systems
do not appear to seize exploratory behaviour during their lifetime. Also it would be
inefficient or plain dangerous for them not to consider the occasional unintentional
behaviour.

However, this reading of ‘on-line learning’ is independent from sample availability and,
therefore, not crucial to the learning from a stream of consciousness.

20.4.2. Sequential On-line Learning

The third meaning of ‘on-line learning’ is that the learning system is only allowed to pass
over each sample in sequence and exactly once. This understanding of ‘on-line learning’
contrasts against batch learning, where a full set of unordered samples is randomly
accessible to the system at all times. (Karp 1992)
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Learning from a randomly accessible set of experiences, allows to use samples more
than once to infer the most relevant properties over the complete data set. Reinforcement
learning examples for batch learning are fitted Q-learning (Ernst et al. 2005), least-squares
policy iteration (Lagoudakis and Parr 2003), or experience replay (Lin 1992).
However, if dynamics change, then learning from a previous set of experiences might

change a policy for the worse. Storing experiences in a set also removes any potentially
useful sequential information.

Whereas a randomly accessible set of complete samples presents a single and stationary
distribution, samples that become available over time present a slightly different distribu-
tion with each time step. The sequence of samples up to any particular point in time
might not be representative for the distribution of all samples.
Consider the fruit example from before: the goal is to find colour regions that enable

to reproduce the grouping of fruits as it is presented in the training set.
In batch learning, the complete distribution of fruit colours and the total number of

groups is known. From this knowledge, colour regions can be inferred such as to cover
the training examples most effectively. This enables to minimise the training error.
In on-line learning, new examples become available only after each time step but an

output has to be generated even before that. For the first input, the system must generate
an output without any information. Its second output is based only on the first example,
its third output is based only on the first and the second example, and so on.
In many cases, on-line learning is considerably harder than batch learning.4 There

are cases, however, where information can be inferred from the particular sequence of
samples.
Consider, for example, the supervised learning of subtraction by one. If the examples

are presented in an incremental sequence
[
〈t+ 1, t〉

]∞
t=0

, the target is always identical to
the last input. A system that considers the last input as a property of the current input
can use the sequentiality of examples to its advantage. In batch learning, this advantage
is void.

Temporal difference reinforcement learning uses the sequentiality of samples to predict
the future discounted cumulative reward of actions. Accordingly, many reinforcement
learning algorithms perform on-line learning according to two of the three presented
understandings.

On-line is necessary in settings, where responses must be reactive and immediate. This

4The field of competitive analysis is concerned with the comparison of algorithmic off-line and on-line
approaches to various problems. (see, for example, Borodin and El-Yaniv 2005; Buchbinder et al.
2012)
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implies crucial complexity conditions for on-line algorithms.
Learning and prediction after each time step must be on-line feasible concerning runtime

and memory complexity. In the following, ‘on-line feasibility’ is defined such that runtime
and space complexity must grow less than the number n of examples (e.g. referents)
received so far.
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21. Learning the Model of a Dynamic
System

The purpose of this chapter is to describe the generation of a semiotic model as well as
the baseline approach against which it can be evaluated in the next chapter.

First, the particular problem of simulating the generation of a mental model is described
from machine learning perspective. A solution to this problem has to satisfy two types of
requirement.
The first type is specific to the simulation of mental modelling. These requirements

must be satisfied in order to guarantee cognitive plausibility according to an intentional
conception of mental models (see part III). The requirements are relevant for a phenomen-
ologically justifiable grounding of symbolic representations in basic perception. However,
they are not necessary to solve the machine learning problem of generating a semiotic
model.

The second type of requirement applies to any algorithm that is supposed to generate
a semiotic model from from sequential data in an on-line feasible manner. These formal
requirements apply not only to cognitive models that are supposed to simulate cognitive
processes. They are necessary for any comparable algorithm.
This second set of requirements enables to design a procedure for the general task.

This task determines training and test samples for the algorithm as well as its measure
of performance. It couples two dynamic trajectories that emit any type of shape and
provides them to the learning algorithm.
The formalisation of the setting enables to compare approaches to the same formal

problem. A baseline approach is determined one that satisfies most of the machine
learning requirements from above. The simplicity and performance of this algorithm
shows very clearly, where semiotic models excel. However, this baseline approach is not
intended to simulate any cognitive process. This implies that it does not satisfy the first
type of requirements.

Both algorithms are presented in detail at the end of this chapter in the form of pseudo
code before their empiric evaluation in the next chapter.
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21.1. Problem Formulation

From the perspective of the cognitive sciences, the computational generation of a semiotic
model from a sensorimotor trajectory can be considered as a simulation for the generation
of mental models from first-person-perspective. Therefore, algorithms that describe such a
process can be understood as cognitive models for the process of mental modelling.
The computational generation of a semiotic model can also be considered as the

procedural acquisition of knowledge. Therefore, it is subject to machine learning. Machine
learning algorithms are relevant to this project, if they learn knowledge that enables them
to solve a similar problem.
This problem is determined by one of the two requirements for pragmatic artificial

intelligence in section 19.3: the ability to recognise parts of its environment. A system
can be assumed to recognise parts of its environment if it is able to predict the sensor
emissions that it receives.
More precisely, the generation of a mental model from first-person-perspective is the

formal problem of learning to predict sensor emissions in the dynamic trajectory of an
environment that is coupled to motor emissions in the dynamic trajectory of the agent.
The approaches from embodied cognition—especially the concept of affordances and
sensorimotor contingencies—substantiate this assumption (see part II). The part on
intentionality and semiotics, on the other hand, describes a structure for semiotic models
that enables to perform this task (see part III).

To a cognitive system, it appears as though its mental model is the world, can describe
everything and, therefore, cannot be biased at all (see section 10.1). A closer look reveals,
however, a specifically phenomenological bias in the way mental models present the world
(see chapter 13 and section 15.5.1).

This translates into particular conditions for semiotic models and their generation
that are not the case for comparable types of models. In the following, cognitive and
computational interpretations for these characteristics are provided.

21.1.1. Requirements of Cognitive Plausibility

First, the state of the model must be discrete. In mental models, this state is the current
belief of its cognitive system. Here, ‘discrete’ means that a representation either is part
of this state or it is not, with no probabilistic gradient in between.
Second, the model must be a partially ordered set. Each layer in the hierarchy of a

mental model is an individual level of abstraction. All representations at one level are
equally abstract and can be part of more than one abstract representation from the level
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above. This follows from definition 6 on page 126.
Third, transitions between representations in the model are probabilistic. Each event

has multiple potential outcomes and cognitive systems can make an educated guess on
their probability based on observed frequency. This enables, for example, to handle sensor
noise and motor uncertainty. This is covered by definition 4 on page 124.
The transitions between mental representations can be probabilistic even if the belief

state is not. Belief state transitions to the next mental representation are dominated by
the most probable successor, not probabilistically distributed over all possible successors.
After each transition, the cognitive system is again in a single, determinate belief state.

Fourth, the model must incorporate mistakes. A mental model requires breakdowns
because they enable to describe a complex structure of individually incompatible parts in
the first place. Only disappointed expectations enable well-informed transitions into new
contexts where the unexpected observation would have been expected. In section 12.6,
this is described as ‘breakdown’.

21.1.2. Machine Learning Requirements

First, the model must have a state. This state represents the hidden state of the en-
vironment which enables to describe a partially observable environment and to predict
emissions that depend on its hidden states. This is covered by the state of semiotic models
in definition 7 on page 126.

Second, the model has to facilitate goal-directed action. The model is not only a passive
description of the environment but it is actively coupled to it. For this purpose, arbitrary
action is as important as perception is. In a semiotic model, this is reflected in the fact
that motor activation is an essential part of its referents (see section 16.3).
To facilitate goal-directed action, the system has to evaluate the states of the model.

This evaluation, however, is not part of the model. Instead, it depends on the system’s
momentary goals, which are independent from the model and, more importantly, change
over the course of time.
Third, the model has to be goal-agnostic. The model is only supposed to capture

causal dynamics between the cognitive system and external reality. Therefore, models
created during the solution of one task must also be able to contribute to solving a
substantially different task in the same or a sufficiently similar environment. Translated
into reinforcement learning terms, this means that the generated model must be indifferent
towards reward.

For semiotic models, this is reflected by the fact that the agent’s emissions are merely
part of the transition condition (again, see section 16.3). The model describes the
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environment, depending on whatever action was performed by the agent. The semiotic
model itself has no immediate influence on this action.(for the original idea of using goal-
agnostic models to increase reinforcement learning performance, see Kuvayev and Sutton
1997)

Eventually, the model must be on-line feasible according to the definition in section 20.4.2.
This means that it must be generated on-line, learn and predict after each time step,
and that sample availability as well as memory and runtime complexity are heavily
constrained.

21.1.3. Task

The general task is to generate a model that enables to predict emissions which depend
on the hidden state of another system. The general approach is to represent this hidden
state with the state of the model such that the relation between this representation and
the emissions of the other system are determinate. Once determined, this relation enables
to predict upcoming emissions.
The full iteration cycle for each step of the simulation is illustrated in algorithm 1.

Algorithm 1: Simulation Cycle and Evaluation.
parameter : Some arbitrary policy π : N0 → motor

input :An interaction procedure interact : e×motor � E × sensor1

input :An initial state e0 ∈ E for the environment

1 function simulation(interact, e0)
2 loss← ∅;
3 model← ∅;
4 state← ∅;
5 for t < T do
6 mt ← π(t); // action selection
7 et+1, st+1 ← interact(et,mt); // interaction
8 if t == 0 then loss(t)← 1; // evaluation
9 else

10 ŝt+1 ← predict(model, state,mt); // test step
11 if ŝt+1 == st+1 then loss(t)← 0; // evaluation
12 else loss(t)← 1;
13 update(model, state,mt, st+1); // training step

1In analogy to ‘→’ as a short mathematical denotation for functions, ‘�’ is used for procedures. The
reason is that repeatedly querying a procedure with the same argument can yield different output
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The procedure simulation receives a probabilistic procedure interact that defines a
dynamic environment and it receives the initial state e0 of this system.
Lines 2 to 4 initialise the loss record, the model, and the state of the model. Line 5

initiates a loop for T iterations. Each iteration of the simulation is identified by a unique
time stamp t and consists of the following instructions.
Line 6 instructs the arbitrary selection of motor emission mt. In line 7, the current

state of the environment et and this motor emission are provided to interact to receive
the next state et+1 and the next emission st+1 of the environment.

If this environment is partially observable according to section 16.1.1, for example, then
it is defined as (E,motor, T,Ω, sensor). In this case, interact returns a random successor
state et+1 with the probability p(et+1) = T (et,mt, et+1) and a random observation st+1

with the probability p(st+1) = Ω(et+1, st+1).
At time t = 0, prediction is completely uninformed. Therefore, line 8 describes the

first loss as maximal. After the next time steps, line 10 instructs a prediction for st+1

according to the current model, state, and motor emission mt. Lines 11 and 12 update
loss according to whether the prediction was correct or not.
Eventually, model and state are updated in line 13 according to the agent’s current

motor emission mt and the environment’s reaction in form of a sensor emission st+1.
The procedures predict and update are implemented according to the particular

approach to the problem at hand. Before these implementations are described in detail,
first, the loss over a complete simulation is defined and it is explained how this setting
constrains the applicable types of machine learning.

21.1.4. Performance Measure

The practical condition for pragmatic artificial intelligence in section 19.3 requires that
agents recognise aspects of their environment. An agent that recognises aspects of its
environment is assumed also to be able to predict the environment’s emissions.

The agent’s success in predicting its next sensor activation depends on the content of its
model. As determined in section 19.3, simulated intentional content must be considered
inaccessible to third-person-perspective. The agent’s predictive performance, however,
enables an indirect evaluation of this content.
The processes that generate this model can be evaluated in virtue of predictive per-

formance over time while the model and its state are continually adjusted to an erratic

values according to a particular probability distribution. In functions the argument determines the
value.
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environment. Better processes adapt the model such that it enables better predictions
where the average cumulative loss is minimal at the end of the simulation.

The cumulative loss at time t is determined according to equation (21.1) as the sum of
all previous losses in a particular simulation.

L(t) =
t∑

t′=0

loss(t′) (21.1)

The average cumulative loss at time t is determined according to equation (21.2).

L̄(t) =
1

t+ 1
L(t) (21.2)

The best off-line algorithm simply stores the whole trajectory and reproduces it in
order to minimise L̄. On-line learning under the condition of on-line feasibility, however,
makes this approach impossible. Instead, the system needs to generate a generalised
model of the trajectory.

21.2. Related Approaches

Several machine learning methods can be applied to this problem, but very few are
empirically comparable. The problem is already with determining the type of the machine
learning task at hand.
Modelling a fully observable environment means there is no hidden information. In

these cases, learning to predict the next consequence shape from the current transition
condition is trivial because the true distribution can be sampled directly and arbitrarily
often.

Learning a model to predict the emissions of a fully observable environment is effectively
a process of supervised learning (see section 20.2). Each transition condition is an input
and each consequence shape is the according target. Simply keeping track of the number
of transitions enables to reproduce the exact probability distribution from which they
have been generated.

Modelling a partially observable environment is considerably harder. Here, transitions
do not follow fixed probability distributions. Predicting the emissions of a partially
observable environment with the model of a fully observable environment can only yield
suboptimal results.

Such a model needs to adapt permanently to describe the ever changing relation between
conditions and consequences. If the dynamics of the environment themselves do not
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change (i.e. if it remains erratic in the same way), however, the structure of the model is
supposed to converge at some point.

21.2.1. Supervised or Unsupervised

In a partially observable environment, there are multiple example relations between
inputs and targets that depend on the current state of the environment (i.e. the emission
function from definition 2 on page 121). This means the problem of prediction cannot be
considered as supervised task. Modelling a partially observable environment first requires
to separate these individual sets of examples.

However, to consider the modelling of a partially observable environment as unsupervised
is problematic as well. There is quite obviously on-line training as well as test: in each
instant, the model is adjusted according to the current emission of the environment and,
in the same instant, the current prediction has a well-defined target.

From a unsupervised learning perspective, the question is: what is the input and
according to what is it supposed to be generalised? In the case of a simulation for the
generation of mental models, the inputs are sensorimotor referents that are supposed to
be consolidated into the same content if they are consistent and consecutive.

The key question from a supervised learning perspective is: what is the input and what
is the target? In the case of a simulation for the generation of mental models, the input
is a tuple of belief state and action, and the target is the next sensor emission.

Therefore, to predict the emissions in a dynamic trajectory has to be a combination of
two problems. On the one hand, it implies the unsupervised learning of a model state
that represents the hidden states of the environment to separate referents into sets of
functional examples. On the other hand, it implies the supervised learning of emissions
(i.e. targets) that occur during each of these states (i.e. inputs).

21.2.2. Relations to Reinforcement Learning

Research in reinforcement learning often deals with the question how to increase learning
efficiency in fully observable environments. A relatively active contemporary example is
hierarchical reinforcement learning.

The goal in hierarchical reinforcement learning is the decomposition of a fully observable
environment into several similar ones. This allows, for example, to transfer action
evaluations that have been learnt for one of these segments onto other, supposedly similar,
ones. As a consequence, the time to learn a policy for a Markov decision process in the
whole environment can be considerably reduced. (Hengst 2010)
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Learning a partially observable model is somewhat opposite to that. Hierarchical
reinforcement learning aims to generalise different segments of the environment into one
representation whereas a partially observable environment has to differentiate identical
segments into separate representations.
This differentiation is necessary due to perceptual aliasing. This term describes a

situation, where the current sensorimotor transition condition is not sufficient to predict
the next sensor consequence—as it is the case during interaction with almost all real-
world environments. Various reinforcement learning methods have been proposed to deal
with perceptual aliasing.

Approaches like McCallum (1993), McCallum (1995), McCallum (1996b), Sun and
Sessions (2000), and Crook and Hayes (2003) solve this problem by approximating a
whole partially observable Markov decision process that includes an evaluation of the
agent’s actions. In case the agent’s goals change, therefore, they need to be learnt again.

Due to its complexity, most approaches that learn a partially observable Markov decision
process are not on-line feasible anyway (McCallum 1996a, pp. 10–11). The need to repeat
the entire process as soon as goals change, makes clear that they are unfit for simulating
cognitive processes.

Recurrent neural networks can use the activation in recurrent layers to represent hidden
states of the environment. So far, however, they have mainly been used to approximate
the discounted cumulative reward (see, for example, Lin and Mitchell 1993) and, therefore,
they are not goal-agnostic as well. The same is true for the more recent implementation
of the same idea with deep recurrent Q-networks (Hausknecht and Stone 2015).2

Also, recent successes in deep reinforcement learning often employ experience replay
memory which stores past experiences and enables the agent to perform batch learning on
them (Lin 1992). In a dynamic environment, however, the assumption of independent and
identically distributed samples does not hold. Therefore, the reuse of past experiences
solidifies assumptions about the environment that might no longer apply.

21.2.3. Order-n Markov Predictors

One model has proven quite useful for learning partially observable environments in
reinforcement learning. Order-n Markov predictors represent the hidden world state with
a fixed history of past emissions. The current history can be considered as the state of an
order-n Markov predictor (see section 16.1.1).

2In principle, recurrent networks should be able to maintain an internal representation for the hidden
state of the environment that enables to predict the next sensor emission. To develop such a method,
however, more research in this direction is necessary.
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These models are mostly used to predict the discounted cumulative reward of actions
during hidden states of the environment. However, they can be easily adapted to predict
the next emission for each of their states.
Order-n Markov predictors are quite popular to describe partially observable environ-

ments. They are generated by simply counting the number of transitions from the current
history of length n to the current emission. The normalised transition counts from one
history to all of its emissions realises a probability distribution that can approximate the
actual distribution very closely.
The previously most frequent successor of the current history provides an informed

estimate on the most probable emission after the next time step. The result is a model
according to definition 4 on page 124, where C ⊆ Sn.

Their prediction performance tends to increase with an increase in history length up to
a certain point. Once this point is reached, performance decreases steadily. Transition
conditions become too specific to generalise the distribution of emissions appropriately
while, at the same time, loosing long-term dependencies over more than n time steps.

This problem can be partially remedied by approaches with variable histories. These
approaches adapt the lengths of histories in order to find an optimal trade-off between the
number of states to keep track of and their general applicability (extensively investigated
in McCallum 1996b). However, this adaptability is paid for with on-line feasibility.

Order-nMarkov predictors contradict some of our requirements for cognitive plausibility.
They are not partially ordered sets and they do not incorporate prediction mistakes.
However, they also fulfil some cognitive conditions. They are in a discrete state and they
describe transitions probabilistically.

Most importantly, however, they are the only approach that satisfies all of the machine
learning conditions. They feature a state in the form of the current history, they are on-
line feasible, they are goal-agnostic, and they enable goal-directed interaction. Therefore,
order-n Markov predictors serve as a perfect baseline approach for an empiric comparison
with automatically generated semiotic models.
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Any non-trivial model for the prediction of a dynamic trajectory needs to represent the
structure and the state of the emitting system. Both representation can be of various
types, depending on the particular kind of model.

The primary structure of an order-n Markov predictor is a matrix, whereas the primary
structure of a semiotic model is a list. The state of an order-n Markov predictor is
sequential, whereas the state of a semiotic model is hierarchical.

Candidate procedures that instruct learning from dynamically coupled trajectories need
to comply with the sensorimotor interface from section 16.3. This means that they need
to implement predict in line 10 and update in line 13 of algorithm 1 on page 155.
In the following, procedures are provided that define these structures as well as their

development over the course of time and with each new referent.

22.1. Baseline Procedure Prediction

In order-nMarkov predictors, the procedure predict accords to algorithm 2. The structure
of the model is a transition table that counts frequencies according to definition 4 on
page 124, where C ⊆ Sn .

The state of this model is the current history of emissions as described it in section 16.1.3.
Together, the state and the current motor emission mt enable to infer the previously most
frequent consequence shape.

The procedure predict receives an order-n Markov predictor, its state, and the current
motor emission mt. Line 2 describes the transition condition as tuple that consists of the
current state of the model (i.e. the current history) and the current motor emission.

If this tuple is not a transition condition in the model, then the model cannot provide
a prediction. If it is a transition condition, the procedure returns the consequence shape
that maximises the transition count according to model.
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Algorithm 2: Prediction with an Order-n Markov Predictor.
input :A model : sensorn ×motor × sensor→ N∗, where n ∈ N+

input :A state : { 0, 1, ..., n− 1 } → sensor
input :The current motor emission mt ∈ motor

output :The expected sensor emission ŝt+1 ∈ sensor

1 function predict(model, state,mt)
2 condition← 〈state,mt〉;
3 if condition /∈

{
c | 〈c, s, f〉 ∈ model

}
then ŝt+1 ← ∅;

4 else ŝt+1 ← argmax
s′∈S

model(condition, s′);

5 return ŝt+1

22.2. Baseline Procedure Update

Algorithm 3 describes the procedure update. It consists of two separate parts. The
first part, updateModel, concerns the update of the model’s structure. The second part,
updateBelief, concerns the update of the model’s state.

Algorithm 3: Updating an Order-n Markov Predictor and its State.
input :A model : sensorn ×motor × sensor→ N∗, where n ∈ N+

input :A state : { 0, 1, ..., n− 1 } → sensor
input :The last motor activation mt−1 ∈ motor
input :The current sensor activation st ∈ sensor

1 function update(model, state,mt−1, st)
2 condition← 〈state,mt−1〉;
3 updateStructure(condition, st, model);
4 updateState(state, st);

The procedure updateModel receives the structure of the model that is supposed to
be updated, its state, the last motor emission mt−1, and the current sensor emission st.
Line 2 describes the generation of a transition condition from state and mt−1.

This transition condition, the current sensor emission, and the structure of the model
are supplied to updateStructure, where the structure is updated accordingly. Eventually,
the state of the model is updated with the current sensor emission.
Algorithm 4 presents updateStructure in detail. The procedure receives a transition

condition (i.e. history), a consequence shape (i.e. sensor emission), and the structure of an
order-n Markov model. Line 2 shows the composition of a referent as a tuple that consists
of this history and the sensor emission. This referent is integrated into the structure of
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Algorithm 4: Updating the Structure of an Order-n Markov Predictor.
input :A transition condition = 〈state,mt−1〉 ∈ C
input :The current sensor activation st ∈ sensor
input :A model : sensorn ×motor × sensor→ N∗, where n ∈ N+

1 function updateStructure(condition, st, model)
2 referent← 〈condition, st〉;
3 if referent not in domain of model then model(referent)← 1;
4 else model(referent)← model(referent) + 1;

the model.
The procedure updateBelief in algorithm 5, eventually, is responsible for updating the

system’s internal representation for the hidden state of the environment. In an order-n
Markov predictor, this representation is the sequence of the n last observations.

Algorithm 5: Updating the State of an Order-n Markov Predictor.
parameter :The history length n ∈ N+

input :A sequential state : { 0, 1, ..., n− 1 } → S
input :The current sensor emission st ∈ sensor

1 function updateState(state, st)
2 for i ∈ {1, n− 2} ⊆ N+ do
3 if i not in domain of state then state(i− 1)← ∅;
4 else state(i− 1)← state(i);

5 state(n− 1)← st;

The procedure receives the current state of the model and the current sensor emission.
It shifts all shapes in the history one index to the left. Empty indices are determined as
the empty set by default. Afterwards, the current sensor emission is added to the end of
the state.

Algorithms 2 to 5 define a baseline approach that generates an order-nMarkov predictor
which enables to predict the emissions in a dynamic trajectory. This approach complies to
our simulation framework in algorithm 1 on page 155 and, therefore, it can be compared
to the generation of a semiotic model.

22.3. Semiotic Model Prediction

In the following sections, procedures for the generation of a semiotic model are described.
The proceeding is analogous to the presentation of the baseline approach in the previous
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section.
According to definition 6 on page 126, each level of a semiotic model consists of a

set of indices Il. In a computational implementation, each bijective functional relation
Il ⊆ feeling can be realised quite naturally as computational reference. Computational
reference is a bijective functional relation between computational identifiers and data
structures in virtue of their memory location.

Algorithm 6 describes predict for semiotic models. The procedure receives the structure
model of a semiotic model, its state, and the current motor emission mt. It returns a
prediction ŝt+1 for the next sensor emission.

Algorithm 6: Prediction with a Semiotic Model.
input :A model according to definition 6 on page 126
input :A state according to definition 7 on page 126
input :The current motor emission mt ∈ motor

output :The expected sensor emission ŝt+1 ∈ sensor

1 function predict(model, state,mt)
2 if 0 not in domain of state then ŝt+1 ← ∅;
3 else if 1 not in domain of state then ŝt+1 ← state(0);
4 else
5 content← state(1);
6 condition←

〈
state(0),mt

〉
;

7 if condition /∈
{
c | 〈c, s, f〉 ∈ content

}
then ŝt+1 ← state(0);

8 else ŝt+1 ← argmax
s∈S

content(condition, s);

9 return ŝt+1

The procedure covers three cases. The first case in line 2 describes that no prediction
can be performed if the state is empty. Line 3 applies if the state has a base shape but
no shape for structural content at level l = 1. In this case, the current base shape is
returned.
Line 4 covers all other cases (i.e. when the state of the model has at least two levels).

First, the current content at state level l = 1 is selected. If the tuple of base shape
and motor emission is not a transition condition in this content, then the base shape at
l = 0 is returned. If it is a transition condition, then the consequence shape according to
content is returned.
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22.4. Semiotic Model Update

In contrast to order-n Markov predictors, structure and state of a semiotic model are
updated simultaneously. The update takes place in virtue of the procedure generateModel.
Algorithm 7 shows the initial call of this procedure.

Algorithm 7: Updating a Semiotic Model and its State.
input :A model according to definition 6 on page 126
input :A state according to definition 7 on page 126
input :The last motor emission mt−1 ∈ motor
input :The current sensor emission st ∈ sensor

1 function update(model, state,mt−1, st)
2 generateModel(0, model, state,mt−1, st);

The core procedure generateModel receives an additional input 0 that determines
which level of the model is to be modified. The procedure is called recursively and for
each recursion, this value is incremented by one.
Algorithm 8 describes the procedure generateModel in detail. It receives a level, the

structure and the state of a semiotic model, an action, and a shape.
If the provided level is beyond the state of the model, the procedure stores the received

shape as new base level in the model structure. It updates the belief state to this shape
and then it returns.

If the level is within the state, the procedure adds the shape to the current level. Next,
in line 4, a condition is composed of the last shape at this level of the state and the
received action.

If level + 1 is not within the state of the model, a new content is generated, the state at
this level is set to the shape of this content, and a new level is introduced that contains
only this content. In line 21, this content is adapted to the transition from condition to
shape, the state is updated in line 23, and the procedure returns.
If level + 1 is within the state of the model, the current content at this level of the

state is selected. If this content does present a referent that consists of the composed
transition from line 4 and the received shape (i.e. if the probability is above σ), then the
content selected in line 6 is adapted to this referent in line 21, the current state at level is
updated to the received shape in line 23, and the procedure returns.1

If this content does not present this referent, then the state is queried for level + 2. If

1The procedure certainty follows immediately the probability of a fact in definition 4 on page 124.
The procedure adapt is defined in algorithm 10.
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Algorithm 8: The Recursive Generation of a Semiotic Model.
parameter :The certainty threshold σ ∈ [0, 1] ⊆ R
input :An integer level ∈ N∗
input :A model according to definition 6 on page 126
input :A state according to definition 7 on page 126
input :The system’s own emission at ∈ Slevel according to definition 8 on

page 126
input :The other system’s emission st ∈ Slevel

1 function generateModel(level, model, state, at, st)
2 if level in domain of state then
3 add st to model(level);
4 condition←

〈
state(level), at

〉
;

5 if level + 1 in domain of state then
6 content← state(level + 1);
7 if certainty(content, condition, st) < σ then
8 if level + 2 in domain of state then
9 context← state(level + 2);

10 abstractCondition← 〈content, condition〉;
11 content← predict(context, abstractCondition);
12 if certainty(content, condition, st) < σ then
13 content← argmax

c∈model(level + 1)
certainty(c, condition, st);

14 if certainty(content, condition, st) < σ then content← ∅ ;

15 else content← ∅ ;
16 generateModel(level + 1, model, state, condition, content);

17 else
18 content← ∅;
19 state(level + 1)← content;
20 model(level + 1)← { content };
21 adapt(content, condition, st);
22 else if level == 0 then model(0)←

{
〈st, indices(level)(st)〉

}
;

23 state(level)← st;
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there is no such level, a new content is created in line 15 and the procedure is called
recursively with an incremented level, the model and its state, the condition from line 4
as an abstract action, and the shape of the newly generated content.

If there is a level + 2 in the state of the model, the content of the state at this level is
selected as context. The current content at level + 1 and the condition from line 4 are
selected as an abstract transition condition. The context from level + 2 is queried for a
prediction of the successor for content from line 6.

If the predicted candidate content does present the referent that consists of the composed
transition from line 4 and the received shape, then the procedure continues at line 16.

If the candidate does not present this referent, the best content among all at level + 1

is retrieved. If the best candidate does present the referent, the procedure continues in
line 16, otherwise a new content is generated.

The core procedure adapts and maintains the semiotic model and its state. Effectively,
it tries to find a good representation for the given referent in the current context. To
achieve this, it exploits hierarchically repetitive structures in the stream of incoming
information. If this succeeds, its state enables to represent aspects of the hidden state of
a dynamic system.

22.5. Semiotic Model Auxiliary Procedures

The procedure certainty determines the certainty of a fact according to definition 4 on
page 124. It is defined in algorithm 9.
The procedure receives a stochastic model function, a transition condition, and a

consequence shape. The condition and consequence define a referent. If this referent is
not in the domain of the stochastic model function, the procedure returns a certainty of 1.

If the referent is in the domain of the model function, the procedure counts the transition
frequencies from the received condition to all consequences, modified by a pseudocount α.
It divides the frequency of the received consequence shape—also modified by α—by this
total amount and returns the result as the probability that the given referent is a fact
according to the current context.
Algorithm 10 describes the adaptation of content to a referent. The procedure adapt

receives a content, a transition condition, and a consequence shape. It composes condition
and consequence into a referent and increments the transition count for this referent by
one.
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22. The Procedures

Algorithm 9: Determining the Certainty of a Fact.
parameter :The pseudocount α ∈ [0, 1] ⊆ R
input :A content : cl × Sl → N∗
input :A transition condition c ∈ Cl

input :A consequence shape s ∈ Slevel

output :The probability of content presenting 〈c, s〉 ∈ referents
1 function certainty(content, c, s)
2 if 〈c, s〉 in domain of content then
3 totalFrequency← 0;
4 for f ′ ∈

{
f | 〈c, s, f〉 ∈ content

}
do

5 totalFrequency← totalFrequency + f ′ + α ;

6 frequency← content(c, s) + α;
7 probability← frequency

totalFrequency ;

8 else probability← 1;
9 return probability

Algorithm 10: Adapting Content to a Referent.
input :A content : cl ×Ml → N∗
input :A transition condition c ∈ Cl

input :A consequence shape s ∈ Sl
1 function adapt(content, c, s)
2 referent← 〈c, s〉;
3 if referent in domain of content then
4 content(referent)← content(referent) + 1 ;

5 else content(referent)← 1;
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23. Conclusion

Prior to their evaluation, consider the relevance of both algorithms for the three major
problems in artificial intelligence from chapter 2. The frame problem and the problem of
vanishing intersections are both merely different manifestations of the symbol grounding
problem. A solution to the symbol grounding problem, therefore, should remedy those
problems as well.
To define categories as a conjunction of features implies a prior selection of these

features (see, for example, Harnad’s search for ‘invariants’ in section 2.2). If the relation
from features to categories is non-functional, however, then more discriminate features
must be generated. Feature selection and generation are active contemporary fields in
machine learning (for an overview, see Saitta and Zucker 2013, pp. 277–293).

The reduction of a category to only some of its members’ features is a selective approach
to abstraction. An alternative is a constructivist approach to abstraction. The structural
features of the members of one category can all be gathered into a disjunctive description
for this category. Constructive abstraction follows up on MacDorman’s proposal of
disjunctive category definitions from section 2.2.1.
According to Wittgenstein’s critique from the same section, however, a disjunctive

category by itself is merely an enumeration of its members. It cannot describe the initial
generation of this category because these members share nothing but being contained in
the same category.

Why should a new disjunctive category be generated at all? New referents could simply
be integrated into already existing ones.

Why should a referent be contained in one category but not in another? According to
Dreyfus, the fact that we experience ourselves always already in some situation provides
us with the mental categories that we assume to be relevant for the current referents. This
context-sensitivity enables the generation of disjunctive, but still discriminate, mental
representations because it favours one category over another.
The content of abstract mental representations serves as such a contextual frame.

The generation of a new representation is always preceded by the retrieval of the most
appropriate available representation. A new representation is introduced only if even the
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most appropriate representation that is available is not appropriate enough.
In the selection of this representation, the system implements a particular expect-

ation bias. Mitchell defines biases as “any basis for choosing one generalization over
another, other than strict consistency with the observed training instances” (Mitchell 1990).
expectation according to section 16.2.1 provides such a basis. It enables to prioritise one
among many representations that are structurally consistent with the current referent.

Algorithm 8 shows that the recognition of referents as representations is primarily biased
towards the last representation. If this fails, then it is biased towards the representation
that has been previously experienced to follow immediately after the last representation
according to the current context. If this fails as well, all representations have to be
considered to find an appropriate one.

With a prioritisation like this, a disjunctive accumulation of features can be discriminate.
A new representation will only be generated if none can be found that presents the referent
well enough.

After retrieving an appropriate representation, the model is adapted to the referent in
two ways. On the one hand, the model is adapted to better describe the structure of the
referent (i.e. content). On the other hand, the model is adapted to better describe the
conditions for its representation (i.e. the context).

This adaptation corresponds to Mountcastle’s equipotential function at the foundation
of cognition (see section 19.2).
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Evaluating the Simulation
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24. Introduction

The intentional content of mental representations cannot be described. What can be
described, is a process that generates structures with intentional content. The description
of a process is a procedure and a computational procedure is an algorithm.
Algorithm 8 in the previous part is designed to describe the generation of a mental

model according to phenomenological theories of intentionality. These theories are based
in empirical data from introspection.

The algorithm is considered a contribution to the cognitive sciences if its computational
instances generate structures that correspond to this data. On top of that, the algorithm
is considered a contribution to machine learning if it also enables to solve a particular
problem as good or even better than comparable approaches.
The generated model can be evaluated in each of the three types of machine learning.

From these three perspectives on the same procedure follows the need for three different
kinds of evaluation.
In supervised learning and reinforcement learning, the algorithms can be compared

quite easily to similar approaches. In supervised learning, the performance measure can
be determined as the difference between output and target. In reinforcement learning,
the performance is determined as the discounted cumulative reward received over time
The performance in unsupervised learning, however, depends on a particular purpose.

In our case, this purpose is to simulate the generation of mental models according to
phenomenological theories on the mind.

24.1. Unsupervised Simulation of Mental Modelling

First and foremost, the learning of a semiotic model is unsupervised because the system
receives an unlabelled, temporally discrete sequence of qualitatively distinguishable
elements, one at a time. The model identifies reoccurring parts of this sequence like
mental models identify objects in their cognitive system’s stream of consciousness. In this
respect, the procedure resembles algorithms for sequence clustering (Ye 2004, pp. 277 sqq.).
The goal of an unsupervised machine learning system “is to build representations of
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the input that can be used for decision making, predicting future inputs, efficiently
communicating the inputs to another machine, etc.” (Ghahramani 2004, p. 73)

From this follows that the performance of an unsupervised learning system depends on
what the system is used for. Algorithms can only be evaluated in a particular application
(Saitta and Zucker 2013, p. 277). In the next section, prediction is presented as this
application.

An appropriate application for the generation of a semiotic model in general is any task
that can be solved faster or better with the model of a dynamic system which can be
generated and adapted on-line.
At its core, however, algorithm 8 is meant as a simulation for the generation of

mental models. This concerns evaluation in two points. Firstly, it puts a focus on the
temporal development of the model—more specifically, the generation and adaptation
of new representations over time. Secondly, it puts a focus on the consistency of the
generated representations—more specifically the relation between internal representations
and external referents. The following evaluation as an unsupervised learning procedure
takes both of these points into account.

24.2. Supervised Sequence Prediction

One application for the learning of a semiotic model is sequence prediction. This process
can be considered as supervised because, after each time step, the system has an input (i.e.
the transition condition) and a target (i.e. the consequence shape) that it was supposed
to predict.
A natural task for such systems is to predict the emissions of a partially observable

environment (see section 16.1.1). Prediction with incomplete perception requires a stateful
model that is able to differentiate emissions that appear identical but follow different
causal dynamics.

The state of a model is supposed to represent parts of a trajectory where the probability
of each emission is determined. The state of order-n Markov predictors is the history of
previous emissions. The state of a semiotic model, in contrast, is a context that describes
the situation (i.e. segments of the trajectory) where this probability is determined.

Think of a card game: the complete state of the game goes far beyond the observable
cards in your hand. However, your current belief about this state is generated only from
your actual observations throughout the game.

Another illustrative example is orientation in a partially observable grid world. Here,
the unsupervised task of the agent is to generate a representation for the hidden state
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of the environment (i.e. the agent’s absolute position). The supervised task is to use
this representation to predict the next sensor emission that it will receive from the
environment.

Due to the unobservability of phenomenal content, an observer cannot simply determine
the match between representations which have been generated from this content and their
referents in the agent’s simulated environment. What can be determined, however, is
whether these representations enables the agent to recognise their referents.

24.3. Reinforcement Learning with Hidden State
Representations

Usually, reinforcement learning agents receive a 3-tuple after each time step t that consist
of their last motor emission mt−1, the current sensor emission st, and a real-valued reward
for their prior actions rt. This is enough to determine optimal policies in fully observable
environments. Accordingly, various research improves the efficiency of algorithms that
infer such an optimal policy (i.e. decrease the time it takes to find an optimal policy).

The common understanding of ‘optimal’ behaviour in reinforcement learning submits to
perceptual aliasing. ‘Optimality’ effectively means ‘the most effective behaviour without
any way to distinguish apparently identical sensor data’.

In a partially observable environment, however, identical sensor emissions might require
different motor activations to achieve a particular goal-state. This one of the symptoms
of perceptual aliasing.
Consider a path that forks at two different locations. To reach its goal, the agent has

to go left at the first fork but right at the second. Although both forks might appear
identical, the agent needs to learn to differentiate them in order to reach its goal.

Only little research exists on on-line methods that increase the eventual effectiveness of
policies in partially observable environments (i.e. exceeding the performance of optimal
policies according to the above interpretation) beyond history-based approaches like the
order-n Markov model.

Cognitive systems are able to resolve perceptual aliasing. Their mental models provide
them with criteria that enable to differentiate identical sensor activations into separate
representations. A good simulation for the generation of mental models, therefore, should
enable an agent to learn a ‘better-than-optimal’ policy as well. (Crook 2007, pp. 101–102)

Models that enable to predict the emissions of a dynamic environment by representing
its hidden state can also use this representation to better navigate the environment
during goal-directed behaviour. Successful prediction is a sufficient indicator for effective
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recognition.
Lonnie Chrisman brings the benefit of model states under perceptual aliasing to the

point.

Interestingly, the ability to predict is not the characteristic that makes pre-
dictive models useful for overcoming perceptual aliasing. Instead, it is the
internal state that is formed and utilized to make predictions which is valuable
to the reinforcement learner. The central idea behind the current approach is
that the information needed to maximize predictiveness is usually the same
information missing from perceptually aliased inputs. (Chrisman 1992, p. 184,
emphasis added)

The state of a semiotic model contains part of the information mentioned by Chrisman.
To show this, the experience of a reinforcement learning agent is augmented with the
current state of a semiotic model of the environment.
If the agent accumulates more reward over time with this state than it does without,

then the state must represent some information about the environment that is actually
hidden to the agent.
Because the evaluation setting is spatial, tasks are differentiated by referring to the

unsupervised case as ‘localisation’, to the supervised case as ‘prediction’, and to the
reinforcement learning case as ‘navigation’. However, these tasks cannot only be applied
to spatial domains.

24.4. Proceeding

The evaluation concerns two types of data: an uncoupled trajectory (i.e. linear data) and
a coupled trajectory (i.e. interactive data). The linear data is a sequence of characters.
The interactive data is a sequence of sensorimotor information that a simulated agent
exchanges with a discrete and partially observable environment (i.e. a grid world). In
the reinforcement learning task, sensorimotor information is extended by a reward that
enables to infer goal-directed behaviour.
The linear data is separated into an artificial sequence and a natural sequence. The

artificial sequence is constructed with the intention to highlight the specificities and
advantages of semiotic models. The natural sequence is chosen independent from the
particular procedure and, therefore, more realistic.
Each evaluation consists of three general parts. The evaluation as an unsupervised

model generator investigates the generated data structure as a model for the sequence
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unsupervised comparative evaluation

trajectory development representation supervised reinforcement

uncoupled artificial Section 25.1.1 Section 25.1.2 Section 25.2 -
uncoupled natural Section 26.1.1 Section 26.1.2 Section 26.2 -

coupled Section 28.1.1 Section 28.1.2 Section 28.1 Section 28.3

Table 24.1.: The Different Evaluation Settings in their According Section.

and as a simulation for mental representations. The evaluation as a supervised sequence
predictor provides an objective measure of performance in on-line sequence prediction.
Lastly, the evaluation as reinforcement learning under perceptual aliasing simulates how
the generation of semiotic models facilitates goal-directed behaviour in partially observable
settings.

The unsupervised evaluation is exclusively qualitative. It presents the temporal develop-
ment of the generated model and the relation between representations and referents. The
supervised and reinforcement learning evaluations are comparative as well. They examine
performance in comparison to a baseline approach. Table 24.1 provides an overview.
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25. Modelling an Artificial Sequence

The evaluation with a linear dataset shows that semiotic models enable to predict the
next emission in an uncoupled dynamic trajectory. Similar to order-n Markov predictors,
semiotic models can also be adjusted to consider more than only one previous emission.
This chapter only considers trajectories according to definition 2 on page 121 with a
history of length of 1. The evaluation with a natural sequence in the next chapter considers
longer histories as well.

The uncoupled dynamic trajectory is an infinite sequence of emissions from one of two
alternating emission functions fa, fb ∈ F , such that ∀f ∈ F .f : [0, 9]→ [0, 9].
One function emits ascending digits fa(x) = (x + 1) mod 10 and the other emits

descending digits fb(x) = (x− 1) mod 10. After each time step t, a new digit is sampled
from one of both functions and depending on the emission at t− 1.

After each time step, there is also a chance of p = 0.2 that the emission function from
which elements are sampled changes. This random change is analogous to the randomly
changing behaviour of the erratic centrifugal governor in chapter 17.
An example part of the trajectory is illustrated in figure 25.1. Each transition from

one emission to the next either increments or decrements this element by exactly one.
The source code used to generate this data can be found in appendix D on page 221.

25.1. Unsupervised Model Generation

The qualitative evaluation investigates the generated semiotic model for similarities with
mental models. Among the relevant properties are 1) a number of new representations
that is asymptotic over time, 2) the representation of similar parts of the environment
with the same representation, and 3) a hierarchical organisation of these representations
(i.e. in a partially ordered set).

Cognitive systems realise these properties reactively and in an on-line manner. This

...101234321098765456765432109876543210901232109878901234...

Figure 25.1.: Part of an Uncoupled Dynamic Trajectory.
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translates into two particular requirements for an according machine learning algorithm.
The first requirement is that incoming data has to be processed in a single pass. This

means that samples can only be used once to adjust the model. As soon as the system
has adapted to the sample, this sample is discarded.

This premise does not only follow from how cognitive systems process information. It
rather pays tribute to the fact that information from the environment cannot be assumed
to be from a single source. Considering past samples in current adjustments to the model
might change the model towards describing circumstances which are no longer the case.
The second requirement follows from this: data cannot be divided into periods of

training and periods of test. Test data might be sampled from a radically different
probability distribution than training data. An obvious way to deal with this fundamental
uncertainty is to adapt the model continuously and on-the-fly (see section 21.1.3.

25.1.1. Structural Model Development

The table 25.1 shows an order-1 Markov predictor that has been generated according
to these conditions. The random changes between fa and fb cause a strong uncertainty
concerning potential successor emissions. This uncertainty expresses in a close-to-uniform
distribution from each emission to its successors.
Once all relevant information has been captured, the structure of the model remains

constant: the model has converged onto the current environment. The most frequent
successors according to an order-1 Markov model of the example trajectory, however,
alternate indefinitely.
Tables 25.2 to 25.4 show the normalised transition frequencies in the representations

at level l = 1 of a semiotic model of the trajectory. Table 25.5 shows the normalised
transition frequencies between those representations in the abstract representation at
level l = 2.1

The model contains only point distributions which reflects a high degree of certainty
concerning the transition of emissions. Accordingly, figure 25.2 shows that the semiotic
model converges after 24 time steps. Level 0 contains all emissions, level 1 contains all
representations at level l = 1, and level 2 contains a single representation.

Already during development, the model separates segments of the trajectory where two
subsequent emissions are in a functional relation. However, three representations have been
generated where two would have sufficed (i.e. one for ascending and one for descending
digits). The reason for the additional representation is that representation update is lazy.

1Unless described differently, in the following, α = 0.0 and σ = 1.0 for the generation of semiotic models
(see algorithms 8 and 9 on page 166 and on page 168).
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consequence (probability in %)

condition ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

‘0’ 0 52 0 0 0 0 0 0 0 48
‘1’ 53 0 57 0 0 0 0 0 0 0
‘2’ 0 44 0 56 0 0 0 0 0 0
‘3’ 0 0 53 0 47 0 0 0 0 0
‘4’ 0 0 0 54 0 46 0 0 0 0
‘5’ 0 0 0 0 48 0 52 0 0 0
‘6’ 0 0 0 0 0 50 0 50 0 0
‘7’ 0 0 0 0 0 0 48 0 52 0
‘8’ 0 0 0 0 0 0 0 51 0 49
‘9’ 52 0 0 0 0 0 0 0 48 0

Table 25.1.: Order-1 Markov Model of an Uncoupled Dynamic Trajectory.

Referents are integrated into the current representation as long as it represents them.
Only if there is a significant difference (i.e. less than σ), the representation changes.

One one hand, this enables redundancy and high error tolerance. On the other hand, it
can also lead to cases where one referent is contained in all representations. If a newly
received referent contradicts this omnipresent referent, a new representation needs to be
introduced. This is the case here.

25.1.2. Representation Associations

To predict the emissions in a dynamic trajectory requires to recognise emission functions
for segments in this trajectory. Figure 25.3 shows part of the dynamic trajectory in
the time interval 900 ≤ t < 1000. Segments in this part are coloured according to the
representation at level l = 1 of the semiotic model that they have been recognised as.
The average length of these segments is l̄ ≈ 2.27. This means that, on average, every

2.27-th time step, the model has to correct for an unexpected observation. As the
generating function changes only every 0.2 time steps on average, these corrections appear
relatively frequent.
However, it also means that, for 2.27 time steps in a row, the model is correct. As

a consequence, the model’s approximate loss L̂ can be inferred immediately from the
average segment length: L̂ = 1

l̄
≈ 1

2.27 = 0.44.
This would be slightly better than a order-1 Markov predictor with as estimated loss of

l̂b ≈ 0.5—in which each emission has two different successors with the same probability.
In the next section, this estimate is tested empirically.
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Figure 25.2.: Representation Generation in Semiotic Model.

1-0 consequence (%)

condition ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘8’ ‘9’

‘0’ 0 100 0 0 0 0 0 0
‘1’ 0 0 100 0 0 0 0 0
‘2’ 0 100 0 0 0 0 0 0
‘3’ 0 0 0 0 100 0 0 0
‘4’ 0 0 0 100 0 0 0 0
‘5’ 0 0 0 0 100 0 0 0
‘6’ 0 0 0 0 0 100 0 0
‘7’ 0 0 0 0 0 0 100 0
‘8’ 0 0 0 0 0 0 0 100
‘9’ 100 0 0 0 0 0 0 0

Table 25.2.: Representation 0 from Level 1.

4 3 210 121 01 2 34 3 2109 01 0 9 012 3 2 3456767 8 76 5 67 8 76 5 6767 890121 0 987 890
98 9 876 54 5 43 2 34 3 21 21 0 987654 567 89012 34567

Figure 25.3.: Represented Segments at Level 1.
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1-1 consequence (%)

condition ‘0’ ‘1’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’

‘0’ 0 100 0 0 0 0 0 0
‘1’ 100 0 0 0 0 0 0 0
‘2’ 0 0 100 0 0 0 0 0
‘3’ 0 0 0 100 0 0 0 0
‘4’ 0 0 0 0 100 0 0 0
‘5’ 0 0 0 0 0 100 0 0
‘6’ 0 0 0 0 0 0 100 0
‘7’ 0 0 0 0 0 100 0 0
‘8’ 0 0 0 0 0 0 100 0
‘9’ 0 0 0 0 0 0 0 100

Table 25.3.: Representation 1 from Level 1.

1-2 consequence (%)

condition ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’

‘0’ 0 0 0 0 0 0 0 0 0 100
‘1’ 100 0 0 0 0 0 0 0 0 0
‘2’ 0 100 0 0 0 0 0 0 0 0
‘3’ 0 0 100 0 0 0 0 0 0 0
‘4’ 0 0 0 100 0 0 0 0 0 0
‘5’ 0 0 0 0 100 0 0 0 0 0
‘6’ 0 0 0 0 0 100 0 0 0 0
‘7’ 0 0 0 0 0 0 100 0 0 0
‘8’ 0 0 0 0 0 0 0 100 0 0
‘9’ 0 0 0 0 0 0 0 0 100 0

Table 25.4.: Representation 2 from Level 1.
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consequence (%)

condition 1-0 1-1 1-2

1-0, (‘0’) 0 0 100
1-0, (‘1’) 0 100 0
1-0, (‘2’) 0 100 0
1-0, (‘3’) 0 0 100
1-0, (‘4’) 0 100 0
1-0, (‘5’) 0 100 0
1-0, (‘8’) 0 100 0
1-0, (‘9’) 0 100 0
1-1, (‘0’) 0 0 100
1-1, (‘1’) 100 0 0
1-1, (‘3’) 0 0 100
1-1, (‘4’) 100 0 0
1-1, (‘5’) 100 0 0
1-1, (‘6’) 100 0 0
1-1, (‘7’) 100 0 0
1-1, (‘8’) 100 0 0
1-2, (‘0’) 100 0 0
1-2, (‘1’) 100 0 0
1-2, (‘2’) 0 100 0
1-2, (‘3’) 100 0 0
1-2, (‘4’) 0 100 0
1-2, (‘5’) 0 100 0
1-2, (‘6’) 0 100 0
1-2, (‘7’) 100 0 0
1-2, (‘8’) 100 0 0
1-2, (‘9’) 100 0 0

Table 25.5.: Representation 0 from Level 2.
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Figure 25.4.: Averaged Performances in Artificial Sequence Prediction.

25.2. Supervised Prediction

Models that count transition frequencies suggest themselves to an evaluation in prediction
tasks. The previous section already provided performance estimates for semiotic models
and the baseline approach. To verify these estimates, their actual performance over ten
learning passes has been recorded.

Each pass is independent from the others and goes on for 1000 time steps. The emission
received by the system after each of these time steps is determined by the dynamic
uncoupled trajectory defined in the introduction and illustrated in figure 25.1.
In the previous section, the baseline performance is estimated to be L̂b ≈ 0.5 and the

performance of the semiotic model to be L̂s ≈ 0.56. Figure 25.4 shows the average success
S̄ of both approaches, where S̄ = 1− L̄.

The estimate for the baseline approach is within the range of results. The estimate for the
semiotic model is slightly above the estimated average success rate of S̄ ≈ 1− 0.44 = 0.56.

This might be due to the fact that the average segment length is only determined from
a particular—potentially non-representative—part of the whole trajectory. Also, the first
and last segment in figure 25.3 are cropped, effectively reducing the average segment
length. Finally, the average learning curve has a variance that accommodates for the
observed deviation.
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The evaluation with a natural dataset shows that semiotic models can also be generated
to describe a trajectory with unknown properties. In the comparative part of this chapter,
the influence that assumptions about these properties have on predictive success are
explored experimentally.
The natural trajectory is written English language. Such texts consist of smaller

segments that can be described as a functional transition from one character to another.
In contrast to the artificial trajectory in the previous chapter, the transitions in language

occur at multiple levels: between the characters in a syllable, between the syllables in a
word, between the words in a sentence, between the sentences in a paragraph, and so on.

Another difference is that linguistic transitions do not occur randomly. Instead, linguistic
segments transition according to high-level functions which are influenced, for example,
by syntactic rules and, eventually, the author’s conception of a story.
This applies to all types of text (e.g. different languages) for as long as the text itself

is orthographically and grammatically correct. Due to its length and easy availability
through Project Gutenberg, Pride and Prejudice by Jane Austen provides a handy
example for a natural trajectory. (Austen 1998)

The only pre-processing is the conversion of upper case into lower case letters and the
removal of any character that is neither a Latin letter, an Arabic digit, or punctuation.
Figure 26.1 shows part of the text.

26.1. Unsupervised Model Generation

Great parts of natural text are determined by syntax, language, or semantics that
could—at least hypothetically—be inferred from the text alone. However, there is always
the writer’s intention which cannot be reasonably expected to be predictable even by a

...jane had sent caroline an early answer to her letter, and was counting
the days till she might reasonably hope to hear again...

Figure 26.1.: Part of a Natural Trajectory.
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Figure 26.2.: Representation Generation in Semiotic Model.

perfect linguistic model.
During the generation of the model, a certain amount of unpredictability must therefore

be tolerated. This fundamental uncertainty is considered by setting the parameters of
the semiotic model to α = 1.0 and σ = 0.1.

Decreasing σ enables to recognise facts with a certainty of at least 10 percent. Increasing
α provides unknown referents with a ‘head start’ certainty (for details, see definition 4 on
page 124).

The model does not converge despite the reduction in precision that follows from these
changes. Considering the fact that language is eventually determined by the author’s
intention, however, it does not come as a surprise that Austen’s intention cannot be
determined by reading Pride and Prejudice once. At the end of the linear evaluation, the
results from several reading passes are analysed in comparison.

26.1.1. Structural Model Development

After the roughly 680 000 characters in the text, the model features 50 representations
at level 0 (i.e. characters), 78 representations at level 1, 74 representations at level 2,
21 representations at level 3, 3 representations level 4, and 1 representation at level 5.
Figure 26.2 shows the development over time.
Of course, the representations at the various levels of the semiotic model do not

correspond to the linguistic representations of natural language (e.g. syllables, words, or
paragraphs). However, they do segment the text into reoccurring parts that follow one
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another according to a higher-level function.
In contrast to the artificial trajectory before, here, the length of the sequence does not

allow to infer estimates on the predictive abilities of the model. Lowering σ makes the
model more tolerant to wrong predictions. The loss would therefore be much higher than
the inverse of the average length of segments.

26.1.2. Representation Associations

The semiotic model of the natural trajectory is much more complex than the model before.
Therefore, the presentation of recognised segments is limited to only three of the total
number of six levels. Like in the chapter before, the lowest level is omitted. Because only
a small segment of the whole sequence can be presented, levels with segments that last
longer than what can be printed on a single page are omitted as well. This concerns levels
four and five.
Figure 26.3 shows the recognised segments at levels one to three that have been

associated with the characters in the first part of the last paragraph of the text. Especially
figure 26.3b shows interesting segmentations, where representations often cover one or
several words without breaking them apart.

This can be attributed to the fact that words are separated by spaces. Representations at
level one cannot reliably predict the next emission after a space. Therefore, representations
at level one and above end considerably more often with spaces than with any other
character.

26.2. Supervised Prediction

If cognitive systems understand a particular text, then they are also able to predict its
characters with a high rate of success. Successful character prediction indicates access to
the content of the text. Unfortunately, no system that perceives only text can access the
same semantic content like systems that feature other modes of perception as well.

However, this is not due to the symbolic quality of these characters but rather due to the
fact that the a mode of perception that is based on linguistic characters follows essentially
different contingencies than the basic modes of biological perception (see section 8.3).
Given the inaccessibility of content that results from essentially different modes of

perception, predictive success at least enables to show that a system is able to uncover
hidden structural regularities.

Figure 26.4 shows the predictive performance during the on-line learning of a semiotic
model and a order-1 Markov predictor. The semiotic model reaches an eventual perform-
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she gave way to all the genuine frankness of her character in her reply to
the letter which announced its arrangement, she sent him language so
very abusive, especially of elizabeth, that for some time all intercourse
was at an end. but at length, by elizabeth’s persuasion, he was prevailed
on to overlook the offence, and seek a reconciliation; and, after a little
further resistance on the part of his aunt, her resentment gave way,
either to her affection for him, or her curiosity to see how his wife
conducted herself; and she condescended to wait on them at pemberley,
in spite of that pollution which its woods had received, not merely from
the presence of such a mistress, but the visits of her uncle and aunt
from the city.

(c) Level 3

she gave way to all the genuine frankness of her character in her reply
to the letter which announced its arrangement, she sent him language so
very abusive, especially of elizabeth, that for some time all intercourse
was at an end. but at length, by elizabeth’s persuasion, he was prevailed
on to overlook the offence, and seek a reconciliation; and, after a little
further resistance on the part of his aunt, her resentment gave way,
either to her affection for him, or her curiosity to see how his wife
conducted herself; and she condescended to wait on them at pemberley,
in spite of that pollution which its woods had received, not merely from
the presence of such a mistress, but the visits of her uncle and aunt
from the city.

(b) Level 2

she gave way to all the genuine frankness of her character in her reply to
the letter which announced its arrangement, she sent him language so
very abusive, especially of elizabeth, that for some time all intercourse
was at an end. but at length, by elizabeth’s persuasion, he was prevailed
on to overlook the offence, and seek a reconciliation; and, after a little
further resistance on the part of his aunt, her resentment gave way,
either to her affection for him, or her curiosity to see how his wife
conducted herself; and she condescended to wait on them at pemberley,
in spite of that pollution which its woods had received, not merely from
the presence of such a mistress, but the visits of her uncle and aunt
from the city.

(a) Level 1

Figure 26.3.: Represented Segments.
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Figure 26.4.: Performance Comparison for the Prediction of a Natural Trajectory.

ance of 32.50 percent while the Markov predictor tops out at 27.22 percent. The semiotic
model also maintains a stronger upward trend, indicating its ability to describe more of
the trajectory, would it continue.
Due to the static trajectory of one particular text—in contrast to the probabilistic

trajectory from before—, the text can only be extended by repetition. It is important to
note that this contradicts the initial premise of a single pass over the data. However, it
enables to illustrate whether previously obtained knowledge about sequential structure
can be successfully applied again and in similar (i.e. identical) circumstances.
A small change in algorithm 8 has been implemented to consider historical transition

conditions such that the state of a semiotic model maintains a history of n past represent-
ations at each level. After this modification, semiotic models can be compared to order-n
Markov predictors, where n ≥ 2.

As a consequence, the updates of each individual level in the state of a semiotic model
in lines 4, 6, and 9 of algorithm 8 on page 166 now follow algorithm 5 on page 163 that
describes the update of the complete state of an order-n Markov predictor.
Queries for the current representation at leach level in lines 19 and 23 of algorithm 8

have to be adjusted accordingly to return only the last element of these histories.
Figure 26.5 provides an overview for n = 1, n = 2, n = 3, n = 4, and n = 5 while

learning a ten times repetition of the original text. The vertical red line indicates the end
of the first pass. The semiotic models and Markov predictors with n = 1 left of this line
are identical to those in figure 26.4.

Markov predictors reach their performance peak faster, but these peaks are consistently
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Figure 26.5.: Performance Comparison for the Prediction of a Repetitive Natural Traject-
ory with Varying History Lengths.

lower, than those of semiotic models. This result shows that, the more complex a model
is, the longer it requires to reach peak performance. It also shows that semiotic models
are able to capture considerably more structural dependencies between the emissions of
the trajectory than Markov predictors.

Most of these dependencies can be assumed to be long-term, due to the fact that semiotic
models outperform specifically Markov predictors, for which temporal dependencies beyond
n are plain impossible to describe. Semiotic models cover such long-term dependencies in
virtue of their hierarchical state which can maintain a particular context for arbitrarily
extended periods of time.

This assumption is substantiated by the fact that semiotic models benefit considerably
more from repetitions in the trajectory, as the steep incline at the start of the first
repetition demonstrates. It can be inferred that dependencies between characters at the
beginning of the text are maintained, whereas Markov predictors overwrite them with
the most current information.
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27. Simulating Cognitive Modelling with
Reinforcement Learning

Reinforcement learning is a general framework to describe the goal-directed interaction
between autonomous agents and another system. Often times, the other system is
conceived of as the agent’s environment. But it could just as well be another agent or
any system that emits shapes for the agent to receive.
In this chapter, a reinforcement learning framework for evaluating simulations of

cognitive systems is presented. The focus is on three abilities of cognitive systems:
1) generating internal representations for hidden states of the environment, 2) making
predictions that depend on these representations, and 3) using these predictions for goal-
directed behaviour.
The agent’s environment in the evaluation with a coupled trajectory is a grid world.

Therefore, 1) the state of the model is effectively a representation of the agent’s absolute
position in this grid world, 2) the predicted emissions are the agent’s neighbouring cells in
this grid world, and 3) goal-directed behaviour is the finding of a path from one position
to another.
Localisation is the agent’s ability to represent its position and orientation in space.

A representation of position and orientation in a partially observable grid world is a
representation of the hidden state of the environment.
The content of these representations is inaccessible to the observer. Localisation

performance can only be determined indirectly: in virtue of the agent’s performance in
predicting the next emission of the environment.
Prediction performance can be determined like in the linear case before, independent

from the agent’s action policy. Transition conditions are composed of the last sensor
activation and one of several possible motor activations (see section 16.3).
Navigation, eventually, requires a particular action policy. Successful navigation is a

sequence of goal-directed motor activations. The agent’s goal in the grid world is to reach
a particular position. In reinforcement learning, agents identify goals in virtue of reward
that they receive as soon as the environment enters a particular state.
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An internal model of the environment can help the agent to consider the outcomes of
its actions and to find a policy more efficiently (i.e. faster). An internal representation of
states that are hidden to the agent, makes it possible to find more effective (i.e. better)
policies.

27.1. Defining the Grid World

In each grid world is only one agent. At any point in time, this agent occupies exactly
one open space position and is oriented towards one of four major directions.
Each cell in this grid is either occupied by a wall, which is represented to the agent

with the character ‘x’, or by an open space, represented to the agent with the character
‘.’.

The grid world is a labyrinth on a discrete, two-dimensional Cartesian coordinate
system. It is generated such that each open space can be reached from any other open
space by repeatedly transitioning a single cell towards any of the four major directions.
If the agent tries to move onto a cell which is occupied by a wall, it remains in its

original position and orientation. Sensor and motor activations beyond the area defined
by this grid are handled with the modulo operator, effectively making the grid world
toroidal.

In the following, two sensor modes and two motor modes determine a total of four
different modes of interaction between agent and environment. Also, parameters are
introduced for making the agent’s actions uncertain.

These different variations provide a general framework, in which a dynamically coupled
trajectory between agent and environment can be modelled. These different modes enable
to evaluate algorithms in different partially observable Markov decision processes that
are based on the same, relatively easy to conceive, grid world.

The evaluation is constrained to one of these variants where the outcome of actions is
fully determined by the state of the environment (i.e. no action uncertainty). The same
grid world, however, can also be used to evaluate models that have been generated by
‘clumsy’ agents during other modes of interaction.

27.1.1. Modes of Interaction

Rotational movement is performed by emitting one of three possible motor activations.
Two motor activations rotate the agent ninety degree clockwise or counter-clockwise. They
are represented by ‘l’ for counter-clockwise rotation and ‘r’ for clockwise rotation. The
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27. Simulating Cognitive Modelling with Reinforcement Learning

third activation transitions the agent one cell into the direction of it’s current orientation
and is represented by ‘f’.

Transitional movement is performed by emitting one of four possible motor activations,
each of which transports the agent to one of the four adjacent positions. When moving
transitionally, the agent is always oriented to the north. The four transitional activations
are represented by ‘n’ for moving to the north, ‘e’ for moving to the east, ‘s’ for moving
to the south, and ‘w’ for moving to the west.

The agent can also receive two mutually exclusive types of sensor activations. Both of
which can be combined with each motor mode. It receives either the four surrounding
cells or the eight surrounding cells. In each case, the received sensor emission is a tuple
starting with the cell that the agent is oriented towards, continuing clockwise.
For benchmarking purposes, there is also a sensor mode that provides the agent with

its absolute coordinates within the grid world. In this mode, the grid world environment
effectively becomes fully observable to the agent.

To introduce noise, the agent can be made ‘clumsy’. This is controlled with a real value
between 0 and 1. For each action, a uniformly distributed random real value from [0, 1] is
drawn. In case this value undercuts ‘clumsiness’, the agent performs a uniformly random
action drawn from the actions available in the current motor mode.

27.1.2. Formalisation

Grid worlds can be formalised as partially observable Markov decision processes. A
partially observable Markov decision processes is a 7-tuple ( S,A, T,Ω, O,R, γ ).
The first five elements describe a partially observable environment according to sec-

tion 16.1.1, where S = E, A = motor, and Ω = sensor. The last two are required to define
a particular goal for the agent.

The element S is a set of world states, A is a set of motor emissions, T : s×A×S → [0, 1]

are the transition probabilities from one state to another given a particular motor emission,
Ω is a set of sensor emissions, and O : s × A × Ω → [0, 1] are the probabilities for a
particular sensor emission in a given state when emitting a particular motor activation.

In the grid world, the description of sensor probabilities can be simplified to O : s→ Ω

because the emissions of the environment are determined only by the agent’s position
and not probabilistically conditional on the agent’s emissions.

Also, in a grid world, S is usually the cross-product of all agent positions and orientations.
Figure 27.1 shows, for example, that the coordinates (3, 2) can be occupied by the agent
and ‘n’ is a valid orientation for the agent. Therefore,

〈
(3, 2), ‘n’

〉
∈ S.
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Figure 27.1.: An Example Grid World.

The set of possible motor emissions during transitional movement isA = { ‘n’, ‘e’, ‘s’, ‘w’ }.
During rotational movement, A = { ‘l’, ‘r’, ‘f’ }, respectively.
Take the following two states during transitional movement in the grid world from

figure 27.1: s0 =
〈
(3, 2), ‘n’

〉
and s1 =

〈
(3, 3), ‘n’

〉
. When the agent emits ‘s’ without

being clumsy, then T (s1, ‘s’, s0) = 1. When being maximally clumsy, on the other hand,
T (s1, ‘s’, s0) = 1

4 , because the motor emission is completely random.
Each element c in a sensor emission can have one of two different values c ∈ C =

{ ‘x’, ‘.’ }. Accordingly, for agents that receive four surrounding cells, the set of sensor
activations is Ω ⊆ C × C × C × C = C4.

The sensor activation in state s =
〈
(3, 2), ‘n’

〉
, for example, is O(s) = ( ‘.’, ‘x’, ‘.’, ‘x’ ).

In state s′ =
〈
(3, 2), ‘e’

〉
, the activation is ‘rotated’ by 90 degree clockwise: O(s′) =

( ‘x’, ‘.’, ‘x’, ‘.’ ). For agents that receive eight cells, Ω ⊆ C8, accordingly.
The element R : s × A → R is the reward the agent receives when performing a

particular action in a particular world state. In the grid world, the agent’s goal is a
position. Therefore, the reward function can be simplified to R : s→ R.

In the grid world, the agent receives a continuous reward of −1, except it reached goal
position. If this is the case, the agent immediately receives a reward of 10 and its position
is reset.
For the agent’s immediate decisions, however, reward that occurs one thousand time

steps in the future might not be as relevant as reward that occurs sooner.
The relevancy of future reward can be controlled by γ ∈ [0, 1]. For γ = 0, the agent only

cares about the immediate reward, whereas for γ = 1, it cares about all future rewards to
the same extend.
Figure 27.1 illustrates an example grid world with start position ‘S’, goal position ‘G’,
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and an agent that is oriented to the north and that receives the four surrounding cells as
( ‘.’, ‘x’, ‘.’, ‘x’ ).

27.2. Cognitive Systems as Reinforcement Learning Agents

Reinforcement learning is usually performed quite different from how cognitive systems
learn to interact with external reality. In the following, two differences are described that
are most important according to the experience gathered during evaluation.
Two according changes to the classical reinforcement learning paradigm are proposed.

These changes maintain the possibility for traditional agents to compete with agents that
generate a partially observable model of the environment.
Traditional reinforcement learning algorithms are not intended to describe the inter-

action between cognitive system and external reality. This shows in the fact that they
perform comparatively weak under these changes.

27.2.1. Preserving the State of the Agent

Sarsa-learning according to Sutton and Barto (1998, chapter 6.4) enables goal-directed
action selection. Sarsa is a conventional value iteration reinforcement learning algorithm.
Action selection follows the maximum of an evaluation function which is determined as
follows.1

Q(st−1, at−1)← Q(st−1, at−1) + α
(
rt + γQ(st, at)−Q(st−1, at−1)

)
(27.1)

The element st−1 is the environment’s last emission, at−1 is the agent’s last emission,
and rt is the reward received after the following time step. The parameter α determines
the learning rate and γ determines the discount factor (see the end of section 27.1.2).
In the comparative setting, st is the current state of the semiotic model or the state

of the Markov predictor respectively. The action at is the system’s motor emission
mt ∈ motor. For each action selection, there is a ε = 0.1 chance for uniformly random
exploratory behaviour.
After each time step, reinforcement learning agents receive an experience 〈st, at, rt〉,

where rt depends not on st and at but on st−1 and at−1 instead.2 To relate action and
reaction, therefore, the agent needs to memorise st and at, to access them after the next

1In comparison to Sutton and Barto, we shifted the temporal index by one into the past so as to avoid
a reference to future rewards.

2This is because reward is considered as part of the environment’s reaction to the actions of the agent
(see, for example, Sutton and Barto 1998, Summary of Notation, under ‘rt’).
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time step as st−1 and at−1. This enables to incorporate the current reward into the Q-
evaluation of the last experience as shown in equation (27.1).

Navigation tasks in reinforcement learning are commonly assumed to be episodic. Once
the agent has reached its goal, the current episode ends. At the end of each episode, the
agent’s position is reset.
Without resetting the agent’s position, it would merely linger at its goal state. Such

behaviour can hardly be called ‘navigation’—although it is cognitively quite realistic.
By resetting the position of the agent after reaching a goal state, however, the reward

in this new position ‘clouds’ the agent’s evaluation of the immediately preceding goal
state. To avoid this, the agent’s memory is usually reset after each episode as well.
Unfortunately, resetting the agent’s memory after reaching a goal state is an infusion

of external knowledge. Externally resetting the agent implies that the ultimate goal state
has been reached beyond what the agent can infer from the reward it receives. Cognitive
agents have no access to this kind of knowledge.

27.2.2. Circular Goals

A ‘teleportation’ at the end of each episode is also hardly justifiable with the actual
interaction between real cognitive systems and external reality. It appears to be necessary,
however, to avoid the agent lingering at the same goal state where it cannot learn anything
new.
Only if the agent’s memory is left intact, the displacement of the agent is an actual

problem. The position reset is initiated externally with no way for the agent to integrate
it into its model. It ‘breaks’ the agent’s stream of consciousness with little chance for
anticipation. As a consequence, the agent’s memory is simply wiped such that this
discrepancy is not integrated into the agent’s model in the first place.

Circular goals provide a cognitively more justifiable approach. Circular goals are defined
as a list of goal states in the same environment, each of which becomes active only once
its immediate predecessor has been achieved.

This alternation of goals is supposed to be a simplified simulation for the agent’s needs.
These needs tend to emerge in an alternating manner as well. This is a more natural
incentive for agent activity than malignant displacement. Also, it allows to test the
transfer of knowledge from one task to another.
Usually, knowledge transfer is investigated either by placing an agent in a somehow

self-similar or repetitive environment (e.g. in hierarchical reinforcement learning) or by
placing an agent who has learned in a particular environment into another environment
where it is supposed to apply previously acquired knowledge.
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The former serves to increase the speed (i.e. the efficiency) of learning, but not its
eventual effectiveness. Although humans exploit similarities in their environment as well,
they recognise dissimilar segments of the environment with the same representations:
they recognise ‘creatively’. This aspect can hardly be observed in objectively repetitive
environments. In the various different segments of one environment with circular goals,
however, it can.

The latter presents the same problem like resetting the agent’s position after reaching
a certain goal state. An unpredictable change in the state of the environment necessarily
introduces uncertainty into the agent’s model of the environment. In the interaction
between cognitive systems and external reality, there is usually no such unpredictable
transition.3

3In the case of a breakdown (see section 12.6), the system adapts its mental model such as to avoid it in
the future.
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The evaluation with another dynamic system shows that semiotic models can be gen-
erated to describe dynamically coupled trajectories. This is demonstrated within the
reinforcement learning framework from the previous chapter. This framework serves as
a basis for more faithful simulations of the interaction between cognitive system and
reality—especially cognitive modelling.

The qualitative evaluation in the grid world setting is analogue to the qualitative evalu-
ation in the linear case. It concerns the temporal development of representations in the
model and the segments of the environment that are associated with these representations.

The quantitative evaluation is separated into a prediction task and an interaction task.
The prediction task investigates the agent’s ability to localise itself within the grid world.
The interaction task investigates its ability to use localisation to navigate successfully.

28.1. Unsupervised Model Generation

The structure of the grid world is inspired by Sutton (1990). It is illustrated in figure 28.1.
During model generation in the localisation task, the agent moves randomly across all open
cells. Its mode of action is transitional, its mode of perception covers eight neighbouring
cells, and ‘clumsiness’ is set to zero.

There is no goal and, therefore, no reward. Each simulation run consists of five million
iterations. During each iteration, the state of the agent’s semiotic model is recorded so
that it can later be associated with the true state of the environment (i.e. the agent’s
position).

28.1.1. Structural Model Development

Figure 28.2 shows the development of the model during one simulation run. At the
end of the simulation, the model contains 99 representations at seven levels. The lower
levels converge relatively early on. The latest of which is level 2 with consistent 18
representations starting from around time step 2 680 000.
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Figure 28.1.: Sutton’s Grid World.
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Figure 28.2.: Representation Generation during Localisation.
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Levels 3 and above appear as though more representations are generated in future time
steps. The total number of new representations in each time step, however, approaches
zero, as does the number of new levels.

Model convergence can be influenced by adjusting α and σ. The selection of α = 1 and
σ = 0.1 was not optimised in this respect but carried over from the linear evaluation in
the previous chapter.
The total number of representations could be considerably reduced by making the

system ‘forget’ representations that have not been used for some time. However, this also
introduces the need for another parameter to determine when exactly representations are
to be removed from the model.

Unfortunately, the definition of any additional parameter implies the danger of special-
ising the system to the task at hand. Therefore, the ability to forget representations will
not be introduced until more research is available.

28.1.2. Representation Associations

It is not trivial to illustrate segments of the grid world that are consistently associated
with the same representation. The reason is, on the one hand, that the same segment
can be represented differently depending on the current context and, on the other hand,
that the same representation can refer to various different segments, depending on their
perceived similarity.

The presentation of all representations at all positions in the grid world goes far beyond
the limits of this work. Therefore, the four most frequent representations at level 1 are
described and it is illustrated where they are employed most frequently by the agent.
Figures 28.3 to 28.6 show the spatial distribution of these representations. Lighter

areas are less frequently associated with the given representation than darker areas.
The four representations do not represent objectively coherent parts of the grid world.

They do, however, represent characteristically different parts. None of the distributions
is uniform over the complete grid world and, although there is some overlap, the core
regions of each representation are rather exclusive. This indicates a good coverage of
individual and separate segments of the environment.

28.2. Supervised Localisation

The predictions of the system are used to estimate its ability to localise itself within the
grid world. Figure 28.7 shows the system’s average prediction performance over 10 runs
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Figure 28.3.: Representation a for Localisation.
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Figure 28.4.: Representation b for Localisation.

200



28. Modelling a Dynamic System

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

Figure 28.5.: Representation c for Localisation.
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Figure 28.6.: Representation d for Localisation.
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Figure 28.7.: Averaged Performances in Localisation Task.

of 5 000 000 iterations each. The performance of the semiotic model is compared to a
Markov predictor with the same history length of n = 1.

The semiotic model outperforms the Markov predictor with an average of 82.0 percent
compared to an average of 79.3 percent. The graph also shows that the variance of the
semiotic model’s performance is much greater than the variance of the Markov predictor.

This is probably due to the fact that a lot more transition samples are available for the
single function approximation in a Markov predictor whereas a semiotic model has to
distribute these samples across several different function approximations (i.e. content).
Depending on the agent’s random actions, this distribution can be more or less appropriate.

28.3. Reinforced Navigation

In the navigation task, all reward is uniform, except in the goal state. Therefore, all
discount factors 0 < γ are effectively equivalent. In our experiments, we set γ = 1

arbitrarily.
All free cells are designated as starting positions and one as goal position. This follows

from the original presentation of the grid world in Sutton (1990) and does not allow for
circular goals as they are introduced in section 27.2.2.
To avoid lingering, navigation tasks are implemented with only one goal and with a

random displacement of the agent, once this goal is reached. Also, a simplified navigation
task is presented with circular goals and without this displacement.

Due to the dilution of the goal state evaluation when randomly displacing the agent while
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Figure 28.8.: Averaged Performances in Navigation Task.

maintaining its memory, the performance of agents in this environment is considerably
lower than usual (again, see section 27.2.2).

Figure 28.8 shows a performance comparison between actions inferred from the states of
Markov predictors and semiotic models over 10 runs of 5 000 000 iterations. It also shows
the average navigation performance of a system with full perception of the environment’s
hidden states in black (i.e. the agent position and orientation) and the average performance
of a system that acts completely random in red.

The results show that random actions generate on average the least amount of cumulative
reward. A Markov-based Sarsa is only slightly better on average but sometimes even
worse than a random policy.

Similar to the orientation task before, the approach with a semiotic model shows the
most variance. After the 1 000 000-th time step, however, even the worst run of semiotic
Sarsa is better than the best run with Markov Sarsa.
The best run with a semiotic model almost reaches the average performance of a

Sarsa agent that receives its absolute position in the grid world, effectively making the
environment fully observable.

28.4. Combined Evaluation of Localisation and Navigation

During evaluation, several peculiarities could be observed that afford directions for research.
In the remaining section, the most interesting are presented.
Figure 28.9 illustrates the average predictive performance during a single run in the
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Figure 28.9.: Combined Performance during Navigation and Localisation.

grid world in comparison to the average cumulative reward. Starting from approximately
time step 2 000 000, both values develop approximately inverse.

If there is in fact an inverse relation between prediction and interaction performance, this
would contradict one basic premise onto which semiotic models are built: representations
that enable successful prediction enable successful interaction as well.

Although the evaluation has confirmed this premise in general, it appears as if there is
a particular ‘incompatibility’ between the use of the same representations for prediction
and interaction.

The same effect also shows in the temporal development of the semiotic model during
navigation in figure 28.10. During non-random, goal-directed interaction, more represent-
ations are necessary for the system to represent its environment than they are during a
random action policy according to figure 28.2 on page 198.

It remains to find out whether this is the case in humans as well. If it is not, this might
be an indicator that value iteration reinforcement learning like Sarsa is a successful, but
possibly not a genuinely cognitive, approach to learning goal-directed interaction.

There are alternatives to reinforcement learning. However, only few qualify as potential
simulations for the cognitive processes during problem solving. With the exception of
goal-agnosticism, this is mainly due to the general conditions for the simulation of mental
models in section 21.1.2.

204



28. Modelling a Dynamic System
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Figure 28.10.: Representation Generation during Navigation.
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Figure 28.11.: Grid World with Alternating Goals.

Sarsa- and Q-learning can be interpreted in such a way that they do not contradict
these conditions. However, neither was implemented with the express intention to
simulate human information processing. If they differ substantially from what humans
do, alternatives that are not incompatible with the corresponding cognitive processes are
yet to be found.

28.5. Knowledge Transfer with Changing Goals

The minimal grid world in figure 28.11 enables to investigate the agent’s ability for
knowledge transfer across different tasks. In more complex environments, the effect is
still visible but far less distinct. This indicates the need for improvement or revision of
some aspects of our approach. What these aspects are, remains to be determined.

Figure 28.12 illustrates the average navigation performance for ten simulation runs over
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10 000 iterations. It shows that even the immediate perception of the agent’s absolute
position enables only slightly better-than-random behaviour if goals change circularly.

Sarsa-learning with a Markov model is even worse than random because it gets stuck
in local evaluation optima that do not correlate with actual reward. Sarsa-learning
with a semiotic model, in contrast, achieves a segmentation of the environment that
corresponds to the two alternating goal states. It accumulated the most average reward
over time.

An optimal policy in this case generates an average cumulative reward per time step of
r̄∗ = 7/4 = 1.75. It requires ∆t = 4 to cross from one goal to the other and, during the
crossing, a reward of ∆r∗ = 7 is accumulated.

With an average accumulated reward of r̄ ≈ 1.35, semiotic Sarsa comes very close to
r̄∗. This is a very promising result, especially considering the fact that r̄∗ is not achievable
in practice due to ten percent exploratory behaviour.

This shows that representations that describe segments of the environment ‘redundantly’
enable to provide the information necessary to solve different tasks in the same environment.
The redundant representations generated to solve one task can be ‘misused’ to distinguish
different states of need.

28.6. Shortcomings of the Baseline Approach

Order-n Markov predictors are not fit to simulate the mental model in a cognitive system
for two reasons. The first reason is that they are phenomenlogically different from mental
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28. Modelling a Dynamic System

models. The second reason is that they are fundamentally limited in their predictive
power due to this difference.
A simple history is just not a good representation for the current state of reality.

It cannot describe nested objects and it does not feature the hierarchical structure of
contexts as Dreyfus describes it in section 2.2.1.
Each order-n Markov predictor has up to n|S| states, where S is the set of emissions

This state changes almost every time step—except when the complete history consists of
one and the same emission. The state of a semiotic model in contrast is updated lazily
and it therefore applies to more extended periods of time. Markov predictors change their
state by default whereas semiotic models state changes occur only when necessary.

With each increment in n, the number of states in a Markov predictor multiplies by the
total number of emissions |S|. With each newly observed emission, it can also multiply
by n. Also, emissions that depend only on a history of m < n previous emissions are not
only considered once but in fact can be stored up to |S|n−m times.
The number of states in a semiotic model, in contrast, can be up to ΠL

l=0|Sl|. Which
one is more space efficient depends therefore on the rate in which new representations are
generated at each level. In a semiotic model, this rate can be changes by modifying α
and σ.
The most important drawback of order-n Markov predictors is that there are always

long-term dependencies that cannot be covered in principle. No exclusively history-based
approach with a finite n can cover dependencies over more than n time steps.
This difference between order-n Markov predictors and semiotic models is equivalent

to the difference between a finite state automaton and a stack automaton. Without some
form of long-term memory, each condition must be ‘forgotten’ at some point in the future.
In an interactive settings, where the state is used by an agent to interact with the

environment, Markov predictors can fail catastrophically. The performance of exclusively
history-based approaches can even become worse than random. The state of a semiotic
model, on the other hand, can be maintained for arbitrarily extended periods of time.
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29. Conclusion

The state of external reality is fundamentally unknown to cognitive systems. From first-
person-perspective, the simple solution is to assign meaning (i.e. mental content) to the
phenomenal shapes that are emitted by external reality. Symbolic mental representations
are a combination of this shape and content. The symbol grounding problem asks for the
origin of the content.

The generation of mental content is not observable from third-person-perspective. Only
the generation of structures that contain this meaning can be observed. To the observer,
these structures are representations for a state of the environment that is hidden from
the observed system. From third-person-perspective, a solution to the symbol grounding
problem is therefore a cognitively plausible generation of representations for hidden states.

The present project followed this general strategy. This conclusion provides an overview
over the line of argument behind this strategy, its general premises, the obtained results,
shortcomings, alternative routes, and possible extensions.

29.1. Summary of Argument

The present project investigates the border between real and simulated cognition. It
suggests a thin overlap under certain premises. The plug of the project is the famous
symbol grounding problem. An interpretation of the symbol grounding problem as a
linguistic problem is rejected and arguments are brought forward against its author’s
intention to ask merely for the origins of language. Instead, the problem concerns the
very origin of understanding itself—prior to any form of communication.

It is argued that basic perception is essentially a subjective symbolic representation of
external reality because the phenomenal shape of basic perception is neither in a similarity
relation (i.e. iconic) nor in a causally determined relation (i.e. indexical) with its referent
in external reality. Instead, the relation between an immediately imperceivable external
referent and the phenomenal shape as which it appears to a cognitive system is determined
only by, and only to, the system itself. It is a symbol that can only be interpreted by a
single system.
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The symbol grounding problem therefore asks the fundamental question for the ultimate
semantic foundation of basic perception. The field of embodied cognition suggests various
answers. Due to the fact that many of the theories in this field express criticism towards
symbolic mental representation, special attention is paid to exposing the conception of
mental representation that is concerned by this critique and its difference to symbolic
mental representation in the above sense.
It can be shown that embodied cognition rejects only a very particular conception

of mental representation. This conception is common in the cognitive sciences. The
philosophy of mind provides another conception, that is not incompatible with embodied
cognition. It can be shown that this subjective conception is essentially different from the
one criticised by embodied cognition. As a consequence, subjective mental representations
with intentional content enable theories of embodied cognition to provide solutions to the
symbol grounding problem.
The relation between the philosophy of mind (i.e. phenomenology) and embodied

cognition is also supported by a semiotic conception of mental representation. According
to semiotics, mental representations are signs and each sign is a ternary relation between
shape, content, and referent. The content of symbolic signs is structural, and so is the
content of basic perceptions. Theories from embodied cognition describe exactly this pre-
conceptual structure in the most basic subjective experience.

Uncovering this similarity enables to apply the same processes that embodied cognition
describes among pre-conceptual elements onto more complex representations that the
cognitive system is aware of. This implements an equipotential structure: different
functions are realised by the same basic processes at various levels of abstraction.

An explanation for the generation of basic perception explains only the most basic mental
content. The mental models that cognitive systems use to conceive of their world consists
of much more complex structures that span over time and multiple levels of abstraction.
To infer the generation of these complex structures from basic perception, Searle’s theory
on intentional mental content is presented. From the structure of intentional content,
requirements for its component representations are derived. These requirements accord
to Peircean semiotics and include the pre-conceptual elements postulated by embodied
cognition.
A semiotic formalisation of intentional mental models is developed that is based in

semiotic mental representations. Examples are provided that show the difference between
semiotic models of fully observable, and semiotic models of partially observable, systems.
It is argued for an intricate coupling between cognitive systems and external reality.
Semiotic models establish such a coupling and are therefore in line with theories from
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embodied cognition.
After a description of semiotic models as a formal counterpart to mental models, an

algorithmic model for the generation of a semiotic model is presented. If semiotic models
are considered as a feasible formalisation for mental models, then an algorithm that
generates a semiotic model can be evaluated as cognitive model: regarding its capacity
to simulate the process of generating a mental model. The procedural generation has to
adhere to particular conditions in the generation of the model. These conditions serve
cognitive justifiability.

The developed algorithm is compared to a baseline approach that satisfies most of
these conditions as well. The evaluation concerns the procedurally generated semiotic
model in three parts. 1) Does it share structural and functional similarities with a real
mental model? 2) Does it enable better predictions than the baseline approach? 3) Does
it enable better goal-directed interaction than the baseline approach?

29.2. Summary of Contribution

A set of theoretical contributions is necessary for developing an algorithmic model for
the generation of mental representations. The first is resolving the implicit ambiguity
in research concerning the symbol grounding problem. This ambiguity is caused by two
individually appropriate but mutually exclusive conceptions of mental representation.
These conceptions are made explicit and their influence on the symbol grounding problem
is described.

This theoretical contribution enables to develop an algorithm that imitates the genera-
tion of mental representations. The evaluation of this algorithm according to the three
questions in the previous section facilitates further contributions. In general, the results
of the evaluation confirm semiotic models as a formalisation for mental models as well as
the algorithmic model that describes the generation of mental models.

More specifically, it can be shown that the relations between representations in a semi-
otic model imitate the relations between mental representations. This can be exemplified
with the following points. 1) The same referent is interpreted differently depending
on context and the same representation can refer to different referents depending on
expectation. 2) The rate of representation generation reduces over time as older repres-
entations are reused and adapted to new circumstances. 3) The overlap of representations
is minimal, functionally segmenting the environment. 4) The content of abstract repres-
entations creates a context in which already established basic representations can form
new relationships.
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The generated representations enable to predict behaviour that depends on hidden
states. In an on-line reactive scenario, this is usually achieved with order-n Markov
predictors. The developed type of semiotic models outperforms this baseline approach
while remaining on-line feasible.

The results are presented in a grid world test bed specifically designed for simulating
mental modelling (see chapter 27). This variant of a reinforcement learning setting is
cognitively more plausible than the traditional setting, easily conceivable by an outside
observer, variable so as to increase or decrease complexity, partially hidden to test for
the construction of hidden state representations, and applicable in qualitative analyses,
exclusively predictive tasks as well as goal-directed interaction.

Within this test bed, the representations in a semiotic model can be shown to improve
goal-directed behaviour. The same structures that enable prediction based on hidden
states also enables to increase performance in reinforcement learning. Both improvements
suggest that the state of a semiotic model can successfully represent the hidden state of
another system.

29.2.1. Room for Improvement

Despite the promising empiric results, there are some points that can be improved given
more time/resources. Room for improvement shows in the two major parts of this work:
the presentation of the theoretical foundation and the practical part that follows after it.
First, and mentioned several times throughout the work, there is rather little overlap

between phenomenological and artificial intelligence research. This, in turn, makes
the presentation and explanation of way more theoretical groundwork from both areas
necessary. In this thesis, this methodological problem is overcome in virtue of embodied
cognition: it serves as a ‘glue’ between both fields. Eventually, however, it is desirable
to connect phenomenology and artificial intelligence on a more fundamental level and
without a middle man.

The dependency on fundamental basics brings with it another problem. Often times,
concepts and theories are introduced without a lot of context. Although their relevance
should become clear in the chapters that follow after their introduction, it is hard to
justify their initial presentation straight from the start. To do this would either require
the reader to be familiar with the scientific background from which they emerged or to
lay out this background in detail. Both cannot be easily achieved within the frame of a
thesis from only one field. Consequently, there are parts that depend on the good will of
the reader that their content will later prove to be relevant.
The practical part can be improved as well. Given more time and resources, the
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presented algorithm should be analysed far more extensively concerning its runtime and
memory characteristics. In the present work, this has been circumvented by introducing
‘on-line feasibility’ as a concept that combines both (see section 20.4.2). This concept
enables to restrict the class of comparable algorithms considerably and it therefore serves
its purpose. The relation between the type of the modelled system, the spatial and
temporal requirements of the algorithm, and the resulting model itself, however, are far
too strong not to be studied in more detail.
Also, the reinforcement learning framework for simulating the generation of mental

models allows a far more versatile evaluation than what has been presented. The purpose
of the simulation is to offer a highly variable but standardised system that is in a permanent
coupling with an agent that tries to model it. The evaluated results in this work concern
only one variant but could be gathered from numerous other combinations of properties
such as to explore the limits of semiotic models and the processes that generate them
in more detail. The extend of such an exploratory analysis and the development of an
appropriate heuristics to choose from the multitude of parameters for an environment,
however, go beyond the scope of this thesis.

The philosophical conclusion concerning genuine mental modelling eventually requires
to abandon simulated environment for good. According to the final conclusion, the next
step is to evaluate the algorithm with a physical robot. However, the time and material
resources required for experiments with physical robots far exceed what can be achieved
in a simulated environment. They require at least one more project of similar scale.

29.2.2. Shortcomings of this Approach

To simulate the modelling of some thing requires to simulate this thing as well. In the
case of mental models, this is problematic: mental models describe external reality but
reality cannot be conceived of independent from our own mental model.

In a simulated reality like the grid world, the system’s ‘external reality’ is the designer’s
conception of a grid world. The system’s representations can only describe this conception
and only with regard to this conception, their appropriateness can be determined and
evaluated.

The mind of the designer filters different aspects of external reality according to what
they consider to be relevant. Aspects that are relevant to another system with a different
body (i.e. the simulated agent) are simply unknown. Only reality itself could provide the
agent with all the information that might become relevant at some point.

The filtering of aspects shows, for example, in the fact that a programmer is incapable
to generate a truly erratic environment. Random events cannot be described without
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implying one particular probability distribution while ignoring another.1

This critique is more fundamental than simply remarking that the grid world is a ‘toy
example’. To criticise the simplicity of a simulation implies that another, a more complex,
simulation might uncover shortcomings that do not occur if the task is too easy.

Strictly speaking, the generation of a mental model with intentional content cannot be
simulated. Here, Searle’s distinction between original and derived intentionality shows its
practical implications. Every conception leaves out aspects of its real referent because
they are dispensable only to the particular system that has this conception.
The practical problem with a simulation is that a designer can always only simulate

some aspects of reality. However, what aspects of reality are relevant to solve a particular
task should be determined by the system that needs to solve this task in the first place.

29.3. Summary of Findings

During the development of this work some unexpected insights have been made. Most
important and crucial to the methodological proceeding was the fact that contemporary
embodied cognition proposes solutions to the symbol grounding problem. It can even
approach the hard part of the symbol grounding problem because it is not only based in
natural theories on cognition but also in phenomenological perspectives on the mind and,
therefore, compatible with first-person-perspective.
From the inaccessibility of external reality follows that it cannot be conceived of

independent from a particular mental model. In a simulation, this condition cannot
be satisfied because simulations are always conceived of by their designer. However,
the condition can be put in formal terms. The concept of dynamic trajectories from
definition 2 allows to describe systems with essentially unknown hidden state transitions.
This takes into account the difficulty of the task to model an essentially inaccessible
external reality. The insight finally gives a practical face to the decade old philosophical
warning that cognitive simulations somehow differ from real cognitive systems.

Due to the resources necessary for replacing simulations with physical robots in real-
world environments, this insight could not be taken into account in the remainder of this
project. What can be taken account in future research, however, is that only system that
interact with the real world can be considered to generate something similar to what we
experience as our own mental model.

1Distributions can be designed to change (i.e. be non-stationary). According to which probability
distribution the properties of the distribution change, however, must be determined at some point or
it must change itself according to some determined distribution.
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Beyond the theoretical findings, the empiric evaluation produced various insights as well.
Among the most interesting ones is that predictive and interactive performance evolve
inversely in a mature semiotic model. This finding contrasts one premise in the design of
the empiric evaluation: that those structures that enable successful prediction also enable
successful interaction. Although this premise could be confirmed, it appears not to be
the case in general. Predictive and interactive performance are both comparatively high,
however, slight variations in both develop inversely. This indicates a certain incompatibility
between performing these two functions with the same underlying structures. It suggests
that at least one of both functions or the structure itself might need to be revised.
Eventually, the failure of traditional agents in the more cognitively plausible non-

episodic reinforcement learning setting (i.e. without world and model state reset and with
circular goals) suggests that they did not develop with the intend to simulate cognitive
processes. In contrast, the success of the presented algorithmic model for the generation
of mental models in the same setting shows that it might perform processes that resemble
those in real cognitive systems. The reaching of circular goals turns out to be a quite
natural formalisation for knowledge transfer from one task to another under the same
causal dynamics.

29.4. Real-world Implications

The advantage of a computational model for the generation of mental models is that it can
be instantiated in any computer system—for example in a physical robot that interacts
with external reality, like real cognitive systems. The immediate and unfiltered access
that a physical robot has to external reality has an important epistemological caveat.

The robot’s internal representations now represent the same immediately inconceivable,
external reality that real cognitive systems represent in their own mental models. They
cannot be treated like the representations in a simulation because every comparison
between the robots representation, and our conception, of reality would effectively only
be a comparison of two different representations of reality.

This provides a necessary condition for symbol grounding in artificial systems. Systems
that interact with something which has already been conceived of (e.g. simulated
environments), can only have symbolic representations with content that is derived from
original intentional content. Only symbolic representations that are grounded in potentially
undiscovered external reality can have original intentional content.

A system that is able to reactively generate partially observable models from real world
systems also has important practical implications. Any control system can be extended
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with a module that generates a semiotic model of the controlled system on-the-fly. Empiric
results suggest that existing systems that are based on order-n Markov predictors can
be considerably improved by switching over to semiotic models. This also applies to the
non-interactive case. Situations that require real-time predictions and model adaptations
can benefit from semiotic models as well. Possible applications are traffic analyses, the
prediction of user interaction, unsupervised sequence clustering, or the implementation of
artificial opponents in computer games that adapt to player behaviour.

29.5. Avenues of Further Research

The insights provided by this project allow several routes of further research. One point is
indicated by the application of semiotic models as a tool for discrete normative predictions.
The base representations can be easily modified, however, to perform continuous regressive
prediction. This could be implemented with various methods, one that suggests itself due
to ease of implementation and low complexity requirements is linear regression. Applied
to sequences of rational numbers, semiotic models could enable to identify repeating
segments of linear development, repeating segments of those segments, and so on. This
could prove to be useful in the technical analysis of financial exchange charts.
The number of the model’s parameters was kept minimal on purpose. It would be

interesting, however, to explore modifications, where these parameters change similar to
an ε-decreasing strategy in reinforcement learning. At first, the model is very tolerant
towards deviations between referents and representations. But with each step in time
the parameters change towards a more precise representation of the environment. Modi-
fications in the model parameters can also be made dependent on the current level. An
intuitive approach would be to increase representation tolerance with each additional
level.

Another loose thread is the implementation of different modalities as O’Regan and Noë
describe it in section 8.3. According to them, different types of perceptual modes emerge
not from different sensorimotor interfaces with a physical environment but from different
contingencies that show in the information that passes this interface. An according
adaptation of the present algorithm would be to decompose the sensor emissions that
the agent receives and treat each of it as an individual sensor emission. Each of these
component emissions can be integrated into, and predicted from, the same semiotic model.
From different sensors, different causal relations should emerge between each type of
component emission. These different contingencies should reflect in modal regions of
the semiotic model, where there are representations that are specific to each mode of
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perception.
For the particular case of a comprehensive cognitive model for the generation of mental

representations, various extensions and improvements are necessary as well. The most
pressing one is the implementation of forgetting. The removal of unused representa-
tions enables a more adaptive model because it avoids the need to meticulously adapt
representations to new and radically different situations. It avoids the need to search
through a plethora of representations that were generated in the past. It also introduces
a stronger generalisation bias towards representations that can be applied to various
different referents that appear under similar circumstances.
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A. The Centrifugal Governor

1 #!/usr/bin/env python3

2

3 f_friction = .05

4 v_friction = .2

5

6 state = (50., 80.)

7

8 print("time, flywheel, valve")

9 for time_index in range(20):

10 print("{}, {:.2f}, {:.2f}".format(time_index + 1, *state))

11 flywheel, valve = state

12 next_flywheel = flywheel + (1. - f_friction) * (90 - valve -

flywheel)↪→

13 next_valve = valve + (1. - v_friction) * (90 - flywheel - valve)

14 state = next_flywheel, next_valve

Appendix A has been referenced in footnote 1 on page 129.
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B. Simulating the Centrifugal Governor

1 #!/usr/bin/env python3

2

3 flywheel_model = lambda x: -.89 * x + 83.25

4 valve_model = lambda x: -.63 * x + 79.58

5

6 state = (50., 80.)

7

8 print("time, flywheel, valve")

9 for time_index in range(1, 21):

10 state = flywheel_model(state[1]), valve_model(state[0])

11 print("{}, {:.2f}, {:.2f}".format(time_index + 1, *state))

Appendix B has been referenced in footnote 4 on page 131.
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C. Emissions from a Simulated
Centrifugal Governor

Time t Flywheel ft Valve vt

2 12.05 48.08
3 40.46 71.99
4 19.18 54.09
5 35.11 67.50
6 23.18 57.46
7 32.11 64.98
8 25.42 59.35
9 30.43 63.57

10 26.68 60.41
11 29.48 62.77
12 27.38 61.00
13 28.96 62.33
14 27.78 61.34
15 28.66 62.08
16 28.00 61.52
17 28.49 61.94
18 28.12 61.63
19 28.40 61.86
20 28.19 61.69
21 28.35 61.82

Table C.1.: Emissions from a Simulated Centrifugal Governor.

Appendix C has been referenced in footnote 3 on page 131.
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D. Generating an Erratic Linear
Sequence

1 #!/usr/bin/env python3

2

3 import random

4

5 def sequence_generator(switch_prob=.2, iterate=-1):

6 i = 0

7

8 last_element = 0

9 state = 1

10

11 while True:

12 yield None, last_element

13 i += 1

14 if 0 < iterate <= i:

15 raise StopIteration()

16 elif random.random() < switch_prob:

17 state *= -1

18 last_element = (last_element + state) % 10

Appendix D has been referenced in chapter 25 on page 177.
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